百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

请问在不加锁的情况下如何保证线程安全?

bigegpt 2024-10-16 07:49 20 浏览

概念

compare and swap,解决多线程并行情况下使用锁造成性能损耗的一种机制,CAS操作包含三个操作数——内存位置(V)、预期原值(A)和新值(B)。如果内存位置的值与预期原值相匹配,那么处理器会自动将该位置值更新为新值。否则,处理器不做任何操作。无论哪种情况,它都会在CAS指令之前返回该位置的值。CAS有效地说明了“我认为位置V应该包含值A;如果包含该值,则将B放到这个位置;否则,不要更改该位置,只告诉我这个位置现在的值即可。

简单点来说就是修改之前先做一下对比,校验数据是否被其他线程修改过,如果修改过了,那么将内存中新的值取出在与内存中的进行对比,直到相等,然后再做修改。

假如我们要对变量:num做累加操作,num初始值=0。1.cpu前往内存取出num;2.判断内存中的num是否被修改;3.做+1操作;4.将修改后的值写入内存中;

这时候可能会有疑问了,判断、自加、写回内存难道不会发生线程安全问题吗?既然cas能成为并发编程中安全问题的解决这,那么这个问题肯定是不会发生的,为什么呢?因为判断、自加、写回内存这是一个由硬件保证的原子操作,硬件是如何保证原子性的,请先看下面这个例子

需求:

使用三个线程分别对某个成员变量累加10W,打印累加结果。

我们使用两种方法完成此需求。1.正常累加(既不加锁,也不使用原子类)。1.使用synchronized。
2.使用原子类(Atomic)。

实现

1.正常累加(既不加锁,也不使用原子类)。

这种方式没有什么说的,直接上代码

package com.ymy.test;


public class CASTest {
    
    private static long count = 0;

    /**
     * 累加10w
     */
    private static  void add(){

        for (int i = 0; i< 100000; ++i){
            count+=1;
        }

    }

    public static void main(String[] args) throws InterruptedException {
        //开启三个线程   t1   t2    t3
        Thread t1 = new Thread(() ->{
            add();
        });

        Thread t2 = new Thread(() ->{
            add();
        });

        Thread t3 = new Thread(() ->{
            add();
        });
        long starTime = System.currentTimeMillis();
        //启动三个线程
        t1.start();
        t2.start();
        t3.start();
        //让线程同步
        t1.join();
        t2.join();
        t3.join();
        long endTime = System.currentTimeMillis();
        System.out.println("累加完成,count:"+count);
        System.out.println("耗时:"+(endTime - starTime)+" ms");
    }
}

执行结果

很明显,三个线程累加,由于cpu缓存的存在,导致结果远远小于30w,这个也是我们预期到的,所以才会出现后面两种解决方案。

2.使用synchronized

使用synchronized时需要注意,需求要求我们三个线程分别累加10W,所以synchronized锁定的内容就非常重要了,要么直接锁定类,要么三个线程使用同一把锁,关于synchronized的介绍以及锁定内容请参考:java并发编程之synchronized

第一种,直接锁定类,我这里采用锁定静态方法。

我们来改动一下代码,将add方法加上synchronized关键字即可,由于add方法已经时静态方法了,所以现在锁定的时整个CASTest类。

 /**
     * 累加10w
     */
    private static synchronized   void add(){

        for (int i = 0; i< 100000; ++i){
            count+=1;
        }

    }

运行结果第一次:

第二次:

第三次:

这里就有意思了,加了锁的运行时间居然比不加锁的运行时间还少?是不是觉得有点不可思议了?其实这个也不难理解,这里就要牵扯到cpu缓存以及缓存与内存的回写机制了,感兴趣的小伙伴可以自行百度,今天的重点不在这里。

第二种:三个线程使用同一把锁

改造代码,去掉add方法的synchronized关键字,将synchronized写在add方法内,新建一把钥匙(成员变量:lock),让三个累加都累加操作使用这把钥匙,代码如下:

package com.ymy.test;


public class CASTest {

    private static long count = 0;


    private static final String lock = "lock";

    /**
     * 累加10w
     */
    private static  void add() {
        synchronized(lock){
            for (int i = 0; i < 100000; ++i) {
                count += 1;
            }
        }
    }

    public static void main(String[] args) throws InterruptedException {
        //开启三个线程   t1   t2    t3
        Thread t1 = new Thread(() -> {
            add();
        });

        Thread t2 = new Thread(() -> {
            add();
        });

        Thread t3 = new Thread(() -> {
            add();
        });
        long starTime = System.currentTimeMillis();
        //启动三个线程
        t1.start();
        t2.start();
        t3.start();
        //让线程同步
        t1.join();
        t2.join();
        t3.join();
        long endTime = System.currentTimeMillis();
        System.out.println("累加完成,count:" + count);
        System.out.println("耗时:" + (endTime - starTime) + " ms");
    }
}

结果如下:

这两种加锁方式都能保证线程的安全,但是这里你需要注意一点,如果是在方法上加synchronized而不加static关键字的话,必须要保证多个线程共用这一个对象,否者加锁无效。

原子类

原子类工具有很多,我们举例的累加操作只用到其中的一种,我们一起看看java提供的原子工具有哪些:

工具类还是很丰富的,我们结合需求来讲解一下其中的一种,我们使用:AtomicLong。

AtomicLong提供了两个构造函数:

value:原子操作的初始值,调用无参构造value=0;调用有参构造value=指定值

其中value还是被volatile 关键字修饰,volatile可以保证变量的可见性,什么叫可见性?可见性有一条很重要的规则:Happens-Before 规则,意思:前面一个操作的结果对后续操作是可见的,线程1对变量A的修改其他线程立马可以看到,具体请自行百度。

我们接着来看累加的需求,AtomicLong提供了一个incrementAndGet(),源码如下:

/**
     * Atomically increments by one the current value.
     *
     * @return the updated value
     */
    public final long incrementAndGet() {
        return unsafe.getAndAddLong(this, valueOffset, 1L) + 1L;
    }

Atomically increments by one the current value :原子的增加一个当前值。好了,我们现在试着将互斥锁修改成原子类工具,改造代码:1.实例化一个Long类型的原子类工具;
2.
for循环中使用incrementAndGet()方法进行累加操作。

改造后的代码:

package com.ymy.test;


import java.util.concurrent.atomic.AtomicLong;

public class CASTest {

//    private static long count = 0;
//
//    private static final String lock = "lock";

    private static AtomicLong atomicLong = new AtomicLong();

    /**
     * 累加10w
     */
    private static void add() {
        for (int i = 0; i < 100000; ++i) {
            atomicLong.incrementAndGet();
        }
    }

    public static void main(String[] args) throws InterruptedException {
        //开启三个线程   t1   t2    t3
        Thread t1 = new Thread(() -> {
            add();
        });

        Thread t2 = new Thread(() -> {
            add();
        });

        Thread t3 = new Thread(() -> {
            add();
        });
        long starTime = System.currentTimeMillis();
        //启动三个线程
        t1.start();
        t2.start();
        t3.start();
        //让线程同步
        t1.join();
        t2.join();
        t3.join();
        long endTime = System.currentTimeMillis();
        //System.out.println("累加完成,count:" + count);
        System.out.println("累加完成,count:" + atomicLong);
        System.out.println("耗时:" + (endTime - starTime) + " ms");
    }
}

结果:

可以得到累加的结果也是:30w,但时间却比互斥锁要久,这是为什么呢?我们一起来解剖一下源码。

AtomicLong incrementAndGet()源码解析

/**
     * Atomically increments by one the current value.
     *
     * @return the updated value
     */
    public final long incrementAndGet() {
        return unsafe.getAndAddLong(this, valueOffset, 1L) + 1L;
    }

    public final long getAndAddLong(Object var1, long var2, long var4) {
        long var6;
        do {
            var6 = this.getLongVolatile(var1, var2);
        } while(!this.compareAndSwapLong(var1, var2, var6, var6 + var4));

        return var6;
    }

我们来看看getAndAddLong方法,发现内部使用了一个 do while 循环,我们看看循环的条件是什么

public final native boolean compareAndSwapLong(Object var1, long var2, long var4, long var6);

这是循环条件的源码,不知道你们发现没有一个关键字:native,表示java代码已经走完了,这里需要调用C/C++代码,这里调用的时C++代码,在这里就要解释一下为什么原子类的比较和赋值是线程安全的,那是因为c++代码中是有加锁的,不知道你们是否了解过内存与cpu的消息总线制,c++就是再消息总线中加了lock,保证了互斥性,所以对比和赋值是一个原子操作,线程安全的。

Unsafe,这个类可以为原子工具类提供硬件级别的原子性,虽然我们java中使用的这些原子工具类虽然都是无锁的,但是我们无需考虑他的多线程安全问题。

为什么原子类比互斥锁的效率低?

好了,现在来思考一下为什么原子工具类的效率会比互斥锁低?明明没有加锁,反而比加了锁慢,这是不是有点不合常理?其实这很符合常理,我们一起来分析一波,CAS(Compare and Swap)重在比较,我们看源码的时候发现有一个 do while循环,这个循环的作用是什么呢?

1.判断期望值是否和内存中的值一致;

2.如果不一致,获取内存中最新的值(var6),此时期望值就等于了var6,使用改期望值继续与内存中的值做对比,直到发现期望值和内存中的值一致,+1之后返回结果。

这里有一个问题不知道你们发现没有,就是这个循环问题,1.我们假设线程1最先访问内存中的num值=0;加载到cpu中;2.还没有做累加操作,cpu执行了线程切换操作;3.线程2得到了使用权,线程2也去内存中加载num=0,累加之后将结果返回到了内存中;4.线程切回线程1,接着上面的操作,要和内存中的num进行对比,期望值=0,内存num=1,法向对比不上,从新获取内存中的num=1加载到线程1所在的cpu中;5.此时线程又切换了,这次切换了线程3;6.线程3从内存中加载num=1到线程3所在的cpu中,之后拿着期望值=1与内存中的num=1做对比,发现值并没有被修改,此时,累加结果之后写回内存;7.线程1拿到使用权;8.线程1期望值=1与内存num=2做对比,发现又不相同,此时又需要将内存中的新num=3加载到线程1所在的cpu中,然后拿着期望值=2与内存num=2做对比,发现相同,累加将结果写回内存。

这是再多线程下的一种情况,我们发现线程1做了两次对比,而真正的程序循环对比的次数肯定会比我们分析的多,互斥锁三个线程累加10w,只需要累加30万次即可,而原子类工具需要累加30万次并且循环很多次,可能几千次,也可能几十万次,所以再内存中累加操作互斥锁会比原子类效率高,因为内存的执行效率高,会导致一个对比执行很多循环,我们称这个循环叫:自旋。

是不是所有情况下都是互斥锁要快呢?肯定不是的,如果操作的数据再磁盘中,或者操作数据量太多时,原子类就会比互斥锁的性能高很多,这很好理解,就像内存中单线程比多线程效率会更高(一般情况)。

CAS的ABA问题

ABA是什么?我们来举个例子:变量a初始值=0,被线程1获取a=0,切换到线程2,获取a=0,并且将a修改为1写回内存,切换到线程3,再内存中获取数据a=1,将数据修改为0然后写回内存,切换到线程1,这时候线程1发现内存中的值还是0,线程1认为内存中a没有被修改,这时候线程1将a的值修改为1,写回内存。

我们来分析一下这波操作会不会有风险,从表面上看,好像没什么问题,累加或者值修改的时候问题不大,觉得这个ABA没有什么风险,如果你这样认为,那就大错特错了,我举个例子,用户A用网上银行给用户B转钱,同时用户C也在给用户A转钱,我们假设用户A账户余额100元,用户A要给用户B转100元,用户C要给用户A转100元,用户A转给用户B、用户C转给用户A同时发生,但由于用户A的网络不好,用户A点了一下之后没有反应,接着又点了一下,这时候就会发送两条用户A给用户B转100元的请求。

我们假设线程1:用户A第一次转用户B100元

线程2:用户A第二次转用户B100元

线程3:用户C转用户A100元。

线程1执行的时候获取用户A的余额=100元,此时切换到了线程2,也获取到了用户A的余额=100元,线程2做了扣钱操作(update money-100 where money=100),100是我们刚查出来的,扣完之后余额应该变成了0元,切换到线程3,用户C转给用户A100元,此时用户A的账户又变成了100元,切换到线程1,执行扣钱操作(update money-100 where money=100),本来是应该扣钱失败的,由于用户C给用户A转了100元,导致用户A的余额又变成了100元,所以线程1也扣钱成功了。

这是不是很恐怖?所以在开发的时候,ABA问题是否需要注意,还请分析好应用场景,像之前说的这个ABA问题,数据库层面我们可以加版本号(版本号累加)就能解决,程序中原子类也给我们提供了解决方案:AtomicStampedReference,感兴趣的小伙伴可以研究一下。其实思路和版本号类似,比较的时候不仅需要比较期望值,还要对比版本号,都相同的情况下才会做修改。

相关推荐

无畏契约手游测试资格获取方法,安卓IOS下载教程

《无畏契约:源能行动》是拳头游戏与腾讯光子工作室联合开发的《无畏契约》正版手游,延续了端游的5v5战术射击核心玩法,并针对移动端进行了操作优化。游戏以快节奏的爆破模式为核心,融合角色技能系统、经济策略...

微软正在测试重新设计的Office图标 但您现在可以提前下载重制版本

今年4月,有消息称微软正在征求用户对一组Office图标7年来首次重制版的看法(上一次重制是在2018年末)。现在,有人决定自己动手,制作了一套微软的高分辨率图标包与用户共享以获得反馈。Reddi...

AB Download Manager:一款可以替代IDM的开源桌面下载管理器

软件介绍IDM下载器大家应该多少都知道一点,如果不知道的话只能自行百度了,但是IDM本身是需要付费的,而今天推荐的这款软件,在下载方面是和IDM差不多的,大概有90%的相似度,感兴趣的朋友可以体验一下...

《夺宝奇兵》PS5光盘仅20G:其余需联网下载

来源:游民星空【《夺宝奇兵》PS5光盘仅20G:其余需联网下载】据游戏测试账号“DoesItPlay1”在推特发布动态表示,《夺宝奇兵:古老之圈》PS5实体光盘只存储了20GB的游戏数据,其余内容需要...

薇姐聊诗词7:诗词创作韵部查询及检测工具

薇姐聊诗词7:诗词创作韵部查询及检测工具。·1、诗词创作中所用韵脚哪里找?平水韵:106部,分平声30部、上声29部、去声30部、入声17部,反映中古汉语语音体系。新韵:(中华新韵)14部,以普通话为...

阿里云国际站:怎样模拟高并发测试场景?

本文由【云老大】TG@yunlaoda360撰写一、使用JMeter安装JMeter:从JMeter官网下载并安装JMeter。创建测试计划:打开JMeter,创建一个新的测试计划。添加线程组...

Android Studio 新增 AI 驱动的测试和更智能的崩溃诊断功能

随着GoogleI/O2025大会的落幕,值得注意的是,谷歌在AndroidStudio中引入了几项新功能,旨在改善Android应用程序的开发流程。最新版本集成了更先进的AI工...

如何在本地测试PHP源码的网站

通常,我们测试自建网站或从网上获取的PHP源码时,若直接上传到服务器,出错后再修改会很麻烦,因此一般会选择先在本地电脑上进行测试。1、先下载喜欢的源码,很多网站提供下载,如源码论坛等。这些源码是现成...

显卡性能测试工具3DMark06的应用教程

显卡作为计算机的重要组成部分,也是主要的输出设备。在计算机系统中,图形处理性能的瓶颈往往在于显卡。若要评估显卡性能,用户可以借助专业的检测工具3DMark,判断显卡是否能满足当前需求,或者是否需要...

Downie4 安装教程(轻松获取视频素材)

效果一、准备工作下载软件链接:http://www.macfxb.cn二、开始安装1、双击运行软件,将其从左侧拖入右侧文件夹中,等待安装完毕2、应用程序显示软件图标,表示安装成功三、运行测试1、打开软...

如何使用瑞星杀毒软件的网速测试功能

下面为大家介绍瑞星杀毒软件的网速测试功能。1、打开安全工具,找到网速测试,点击下载后开启。2、打开网速测试页面,点击开始测试按钮。3、测试结束后,你就能知晓自己的网速了。(9744667)...

阿里云国际站:如何测试服务器真实带宽?

本文由【云老大】TG@yunlaoda360撰写基于命令行工具测试iperf/iperf3:服务器端:在服务器上安装iperf后,运行iperf-s或iperf3-s启动服务端,...

CentOS Docker 安装

Docker支持以下的64位CentOS版本:CentOS9(stream)更高版本...必须启用centos-extras仓库,该仓库默认启用,如果您禁用了它,需要重新启用。使用官...

Fast YOLO:用于实时嵌入式目标检测(附论文下载)

关注并星标从此不迷路计算机视觉研究院公众号ID|ComputerVisionGzq计算机视觉研究院专栏作者:Edison_G目标检测被认为是计算机视觉领域中最具挑战性的问题之一,因为它涉及场景中对象分...

aigc检测报告与查重监测报告

哈喽学妹学弟们!最近是不是都在忙着写论文呢?记得当初我写论文的时候,也被AIGC检测报告和查重监测报告搞得晕头转向。不过经过我的一番摸索,终于搞清楚了它们之间的区别和联系。来来来,学姐今天就来给你们传...