百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

Spring Cloud中的Eureka和Zookeeper的区别在哪?

bigegpt 2024-08-07 17:39 8 浏览

首先为自己打个广告,我目前在某互联网公司做架构师,已经有5年经验,每天都会写架构师系列的文章,感兴趣的朋友可以关注我和我一起探讨,关注我,免费分享Java基础教程,以及进阶的高级Java架构师教程,全部免费送

做程序员的,对Spring和Cloud一定不会感到陌生

如何才能实打实的消化它们呢

接下来沃师傅将会告诉你,如何夯实Spring Cloud

CAP理论

在总结两者的区别之前,我们先来看一个 CAP 理论。什么叫 CAP 理论呢?CAP 理论是由 Eric Brewer 教授提出,是分布式系统中的一个重要的概念。具体如下:

C(Consistency):数据一致性。大家都知道,分布式系统中,数据会有副本。由于网络或者机器故障等因素,可能有些副本数据写入正确,有些却写入错误或者失败,这样就导致了数据的不一致了。而满足数据一致性规则,就是保证所有数据都要同步。

A(Availability):可用性。我们需要获取什么数据时,都能够正常的获取到想要的数据(当然,允许可接受范围内的网络延迟),也就是说,要保证任何时候请求数据都能够正常响应。

P(Partition Tolerance):分区容错性。当网络通信发生故障时,集群仍然可用,不会因为某个节点挂了或者存在问题,而影响整个系统的正常运作。对于分布式系统来说,出现网络分区是不可避免的,因此分区容错性是必须要具备的,也就是说,CAP三者,P是必须的,是个客观存在的事实,不可避免,也无法绕过。

zookeeper的CP原则

对于 zookeeper 来书,它是 CP 的。也就是说,zookeeper 是保证数据的一致性的,但是这里还需要注意一点是,zookeeper 它不是强一致的,什么意思呢?打个比方,现在客户端 A 提交一个写操作,zookeeper 在过半数节点操作成功之后就可以返回,但此时,客户端 B 的读操作请求的是 A 写曹操尚未同步到的节点,那么读取的就不是 A 最新提交的数据了。

那如何保证强一致性呢?我们可以在读取数据的时候先执行一下sync 操作,即与 leader 节点先同步一下数据,再去取,这样才能保证数据的强一致性。

但是 zookeeper 也有个缺陷,刚刚提到了 leader 节点,当 master 节点因为网络故障与其他节点失去联系时,剩余节点会重新进行 leader 选举。问题在于,选举 leader 的时间太长,30 ~ 120s, 且选举期间整个 zookeeper 集群都是不可用的,这就导致在选举期间注册服务瘫痪。

在云部署的环境下,因网络问题使得 zookeeper 集群失去 master 节点是较大概率会发生的事,虽然服务能够最终恢复,但是漫长的选举时间导致的注册长期不可用是不能容忍的。比如双十一当天,那就是灾难性的。

Eureka的AP原则

大规模网络部署时,失败是在所难免的,因此我们无法回避这个问题。当向注册中心查询服务列表时,我们可以容忍注册中心返回的是几分钟以前的注册信息,但不能接受服务直接 down 掉不可用。

Eureka 在被设计的时候,就考虑到了这一点,因此在设计时优先保证可用性,这就是 AP 原则。Eureka 各个节点都是平等的,几个节点挂掉不会影响正常节点的工作,剩余的节点依然可以提供注册和查询服务。而 Eureka 的客户端在向某个 Eureka 注册或时如果发现连接失败,则会自动切换至其它节点,只要有一台 Eureka 还在,就能保证注册服务可用(即保证A原则),只不过查到的信息可能不是最新的(不保证B原则)。

正因为应用实例的注册信息在集群的所有节点间并不是强一致的,所以需要客户端能够支持负载均衡以及失败重试。在 Netflix 的生态中,ribbon 可以提供这个功能。

因此, Eureka 可以很好的应对因网络故障导致部分节点失去联系的情况,而不会像 zookeeper 那样使整个注册服务瘫痪。

作为服务注册中心,最重要的是要保证可用性,可以接收段时间内数据不一致的情况。个人觉得 Eureka 作为单纯的服务注册中心来说要比 zookeeper 更加“专业”一点。

以下是分享的部分架构师的学习资料和部分零基础学习Java的视频资料,附带练习题和课堂笔记,需要的朋友可以私信我免费获取

推荐阅读:

SpringCloud学习笔记-Eureka服务治理

Spring Cloud Alibba教程:Sentinel的使用

Spring Cloud中如何保证各个微服务之间调用的安全性(上篇)

原文:

https://zhuanlan.zhihu.com/p/70491878

相关推荐

方差分析简介(方差分析通俗理解)

介绍方差分析(ANOVA,AnalysisofVariance)是一种广泛使用的统计方法,用于比较两个或多个组之间的均值。单因素方差分析是方差分析的一种变体,旨在检测三个或更多分类组的均值是否存在...

正如404页面所预示,猴子正成为断网元凶--吧嗒吧嗒真好吃

吧嗒吧嗒,绘图:MakiNaro你可以通过加热、冰冻、水淹、模塑、甚至压溃压力来使网络光缆硬化。但用猴子显然是不行的。光缆那新挤压成型的塑料外皮太尼玛诱人了,无法阻挡一场试吃盛宴的举行。印度政府正...

Python数据可视化:箱线图多种库画法

概念箱线图通过数据的四分位数来展示数据的分布情况。例如:数据的中心位置,数据间的离散程度,是否有异常值等。把数据从小到大进行排列并等分成四份,第一分位数(Q1),第二分位数(Q2)和第三分位数(Q3)...

多组独立(完全随机设计)样本秩和检验的SPSS操作教程及结果解读

作者/风仕在上一期,我们已经讲完了两组独立样本秩和检验的SPSS操作教程及结果解读,这期开始讲多组独立样本秩和检验,我们主要从多组独立样本秩和检验介绍、两组独立样本秩和检验使用条件及案例的SPSS操作...

方差分析 in R语言 and Excel(方差分析r语言例题)

今天来写一篇实际中比较实用的分析方法,方差分析。通过方差分析,我们可以确定组别之间的差异是否超出了由于随机因素引起的差异范围。方差分析分为单因素方差分析和多因素方差分析,这一篇先介绍一下单因素方差分析...

可视化:前端数据可视化插件大盘点 图表/图谱/地图/关系图

前端数据可视化插件大盘点图表/图谱/地图/关系图全有在大数据时代,很多时候我们需要在网页中显示数据统计报表,从而能很直观地了解数据的走向,开发人员很多时候需要使用图表来表现一些数据。随着Web技术的...

matplotlib 必知的 15 个图(matplotlib各种图)

施工专题,我已完成20篇,施工系列几乎覆盖Python完整技术栈,目标只总结实践中最实用的东西,直击问题本质,快速帮助读者们入门和进阶:1我的施工计划2数字专题3字符串专题4列表专题5流程控制专题6编...

R ggplot2常用图表绘制指南(ggplot2绘制折线图)

ggplot2是R语言中强大的数据可视化包,基于“图形语法”(GrammarofGraphics),通过分层方式构建图表。以下是常用图表命令的详细指南,涵盖基本语法、常见图表类型及示例,适合...

Python数据可视化:从Pandas基础到Seaborn高级应用

数据可视化是数据分析中不可或缺的一环,它能帮助我们直观理解数据模式和趋势。本文将全面介绍Python中最常用的三种可视化方法。Pandas内置绘图功能Pandas基于Matplotlib提供了简洁的绘...

Python 数据可视化常用命令备忘录

本文提供了一个全面的Python数据可视化备忘单,适用于探索性数据分析(EDA)。该备忘单涵盖了单变量分析、双变量分析、多变量分析、时间序列分析、文本数据分析、可视化定制以及保存与显示等内容。所...

统计图的种类(统计图的种类及特点图片)

统计图是利用几何图形或具体事物的形象和地图等形式来表现社会经济现象数量特征和数量关系的图形。以下是几种常见的统计图类型及其适用场景:1.条形图(BarChart)条形图是用矩形条的高度或长度来表示...

实测,大模型谁更懂数据可视化?(数据可视化和可视化分析的主要模型)

大家好,我是Ai学习的老章看论文时,经常看到漂亮的图表,很多不知道是用什么工具绘制的,或者很想复刻类似图表。实测,大模型LaTeX公式识别,出乎预料前文,我用Kimi、Qwen-3-235B...

通过AI提示词让Deepseek快速生成各种类型的图表制作

在数据分析和可视化领域,图表是传达信息的重要工具。然而,传统图表制作往往需要专业的软件和一定的技术知识。本文将介绍如何通过AI提示词,利用Deepseek快速生成各种类型的图表,包括柱状图、折线图、饼...

数据可视化:解析箱线图(box plot)

箱线图/盒须图(boxplot)是数据分布的图形表示,由五个摘要组成:最小值、第一四分位数(25th百分位数)、中位数、第三四分位数(75th百分位数)和最大值。箱子代表四分位距(IQR)。IQR是...

[seaborn] seaborn学习笔记1-箱形图Boxplot

1箱形图Boxplot(代码下载)Boxplot可能是最常见的图形类型之一。它能够很好表示数据中的分布规律。箱型图方框的末尾显示了上下四分位数。极线显示最高和最低值,不包括异常值。seaborn中...