Spring Cloud Eureka 是 Spring Cloud Netflix 微服务套件的一部分,基于 Netflix Eureka 做了二次封装,主要负责实现微服务架构中的服务治理功能。
Spring Cloud Eureka 是一个基于 REST 的服务,并且提供了基于 Java 的客户端组件,能够非常方便地将服务注册到 Spring Cloud Eureka 中进行统一管理。
服务治理是微服务架构中必不可少的一部分,阿里开源的 Dubbo 框架就是针对服务治理的。服务治理必须要有一个注册中心,除了用 Eureka 作为注册中心外,我们还可以使用 Consul、Etcd、Zookeeper 等来作为服务的注册中心。
用过 Dubbo 的读者应该清楚,Dubbo 中也有几种注册中心,比如基于 Zookeeper、基于 Redis 等,不过用得最多的还是 Zookeeper 方式。
至于使用哪种方式都是可以的,注册中心无非就是管理所有服务的信息和状态。若用我们生活中的例子来说明的话,笔者觉得 12306 网站比较合适。
首先,12306 网站就好比一个注册中心,顾客就好比调用的客户端,当他们需要坐火车时,就会登录 12306 网站上查询余票,有票就可以购买,然后获取火车的车次、时间等,最后出发。
程序也是一样,当你需要调用某一个服务的时候,你会先去 Eureka 中去拉取服务列表,查看你调用的服务在不在其中,在的话就拿到服务地址、端口等信息,然后调用。
注册中心带来的好处就是,不需要知道有多少提供方,你只需要关注注册中心即可,就像顾客不必关心有多少火车在开行,只需要去 12306 网站上看有没有票就可以了。
为什么 Eureka 比 Zookeeper 更适合作为注册中心呢?主要是因为 Eureka 是基于 AP 原则构建的,而 ZooKeeper 是基于 CP 原则构建的。
在分布式系统领域有个著名的 CAP 定理,即 C 为数据一致性;A 为服务可用性;P 为服务对网络分区故障的容错性。这三个特性在任何分布式系统中都不能同时满足,最多同时满足两个。
Zookeeper 有一个 Leader,而且在这个 Leader 无法使用的时候通过 Paxos(ZAB)算法选举出一个新的 Leader。这个 Leader 的任务就是保证写数据的时候只向这个 Leader 写入,Leader 会同步信息到其他节点。通过这个操作就可以保证数据的一致性。
总而言之,想要保证 AP 就要用 Eureka,想要保证 CP 就要用 Zookeeper。
Dubbo 中大部分都是基于 Zookeeper 作为注册中心的。Spring Cloud 中当然首选 Eureka。
Spring Cloud Eureka是什么
bigegpt 2024-08-07 17:39 8 浏览
相关推荐
- 方差分析简介(方差分析通俗理解)
-
介绍方差分析(ANOVA,AnalysisofVariance)是一种广泛使用的统计方法,用于比较两个或多个组之间的均值。单因素方差分析是方差分析的一种变体,旨在检测三个或更多分类组的均值是否存在...
- 正如404页面所预示,猴子正成为断网元凶--吧嗒吧嗒真好吃
-
吧嗒吧嗒,绘图:MakiNaro你可以通过加热、冰冻、水淹、模塑、甚至压溃压力来使网络光缆硬化。但用猴子显然是不行的。光缆那新挤压成型的塑料外皮太尼玛诱人了,无法阻挡一场试吃盛宴的举行。印度政府正...
- Python数据可视化:箱线图多种库画法
-
概念箱线图通过数据的四分位数来展示数据的分布情况。例如:数据的中心位置,数据间的离散程度,是否有异常值等。把数据从小到大进行排列并等分成四份,第一分位数(Q1),第二分位数(Q2)和第三分位数(Q3)...
- 多组独立(完全随机设计)样本秩和检验的SPSS操作教程及结果解读
-
作者/风仕在上一期,我们已经讲完了两组独立样本秩和检验的SPSS操作教程及结果解读,这期开始讲多组独立样本秩和检验,我们主要从多组独立样本秩和检验介绍、两组独立样本秩和检验使用条件及案例的SPSS操作...
- 方差分析 in R语言 and Excel(方差分析r语言例题)
-
今天来写一篇实际中比较实用的分析方法,方差分析。通过方差分析,我们可以确定组别之间的差异是否超出了由于随机因素引起的差异范围。方差分析分为单因素方差分析和多因素方差分析,这一篇先介绍一下单因素方差分析...
- 可视化:前端数据可视化插件大盘点 图表/图谱/地图/关系图
-
前端数据可视化插件大盘点图表/图谱/地图/关系图全有在大数据时代,很多时候我们需要在网页中显示数据统计报表,从而能很直观地了解数据的走向,开发人员很多时候需要使用图表来表现一些数据。随着Web技术的...
- matplotlib 必知的 15 个图(matplotlib各种图)
-
施工专题,我已完成20篇,施工系列几乎覆盖Python完整技术栈,目标只总结实践中最实用的东西,直击问题本质,快速帮助读者们入门和进阶:1我的施工计划2数字专题3字符串专题4列表专题5流程控制专题6编...
- R ggplot2常用图表绘制指南(ggplot2绘制折线图)
-
ggplot2是R语言中强大的数据可视化包,基于“图形语法”(GrammarofGraphics),通过分层方式构建图表。以下是常用图表命令的详细指南,涵盖基本语法、常见图表类型及示例,适合...
- Python数据可视化:从Pandas基础到Seaborn高级应用
-
数据可视化是数据分析中不可或缺的一环,它能帮助我们直观理解数据模式和趋势。本文将全面介绍Python中最常用的三种可视化方法。Pandas内置绘图功能Pandas基于Matplotlib提供了简洁的绘...
- Python 数据可视化常用命令备忘录
-
本文提供了一个全面的Python数据可视化备忘单,适用于探索性数据分析(EDA)。该备忘单涵盖了单变量分析、双变量分析、多变量分析、时间序列分析、文本数据分析、可视化定制以及保存与显示等内容。所...
- 统计图的种类(统计图的种类及特点图片)
-
统计图是利用几何图形或具体事物的形象和地图等形式来表现社会经济现象数量特征和数量关系的图形。以下是几种常见的统计图类型及其适用场景:1.条形图(BarChart)条形图是用矩形条的高度或长度来表示...
- 实测,大模型谁更懂数据可视化?(数据可视化和可视化分析的主要模型)
-
大家好,我是Ai学习的老章看论文时,经常看到漂亮的图表,很多不知道是用什么工具绘制的,或者很想复刻类似图表。实测,大模型LaTeX公式识别,出乎预料前文,我用Kimi、Qwen-3-235B...
- 通过AI提示词让Deepseek快速生成各种类型的图表制作
-
在数据分析和可视化领域,图表是传达信息的重要工具。然而,传统图表制作往往需要专业的软件和一定的技术知识。本文将介绍如何通过AI提示词,利用Deepseek快速生成各种类型的图表,包括柱状图、折线图、饼...
- 数据可视化:解析箱线图(box plot)
-
箱线图/盒须图(boxplot)是数据分布的图形表示,由五个摘要组成:最小值、第一四分位数(25th百分位数)、中位数、第三四分位数(75th百分位数)和最大值。箱子代表四分位距(IQR)。IQR是...
- [seaborn] seaborn学习笔记1-箱形图Boxplot
-
1箱形图Boxplot(代码下载)Boxplot可能是最常见的图形类型之一。它能够很好表示数据中的分布规律。箱型图方框的末尾显示了上下四分位数。极线显示最高和最低值,不包括异常值。seaborn中...
- 一周热门
- 最近发表
- 标签列表
-
- mybatiscollection (79)
- mqtt服务器 (88)
- keyerror (78)
- c#map (65)
- xftp6 (83)
- bt搜索 (75)
- c#var (76)
- xcode-select (66)
- mysql授权 (74)
- 下载测试 (70)
- linuxlink (65)
- pythonwget (67)
- androidinclude (65)
- libcrypto.so (74)
- linux安装minio (74)
- ubuntuunzip (67)
- vscode使用技巧 (83)
- secure-file-priv (67)
- vue阻止冒泡 (67)
- jquery跨域 (68)
- php写入文件 (73)
- kafkatools (66)
- mysql导出数据库 (66)
- jquery鼠标移入移出 (71)
- 取小数点后两位的函数 (73)