百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

一文弄懂apply、map和applymap三种函数的区别

bigegpt 2024-09-02 16:26 3 浏览


CDA数据分析师 出品

在日常处理数据的过程中,会经常遇到这样的情况,对一个DataFrame进行逐行、逐列或者逐元素的操作,很多小伙伴也知道需要用到apply、map或者applymap,但是具体什么情况下运用哪种方法或者说对这些方法了解不够,用起来晕晕乎乎始终没有很明白,希望这一篇文章能够帮助有需要的小伙伴弄懂他们之间的区别,并且在遇到问题的时候能够很清楚明白用哪个以及该怎样使用。闲话少叙,我们正式开始吧。

首先,来个总结

· apply:应用在DataFrame的行或列中,也可以应用到单独一个Series的每个元素中

· map:应用在单独一个Series的每个元素中

· applymap:应用在DataFrame的每个元素中

apply

先从apply开始,当然最权威的说明还是要看官方文档:

apply是沿DataFrame的轴应用功能,传递给函数的对象是Series对象,其索引为DataFrame的索引(axis = 0'')或DataFrame的列(axis = 1'')

当然最常用的还是DataFrame.apply(),下边我们通过例子来说明一下帮助理解.

首先有一个表:

apply应用到DataFrame中

如果我们求一下每一列或者每一列的极差,注意axis参数的设置,一般默认为0,即求每一列的极值

apply的参数可以直接接收现成的函数,也可以接收自定义函数,比如自定义的匿名函数:

通过对轴信息的设置,也可以求每一行的极差:

需要注意的是结果的索引,能够很明显的告诉大家现在求的是行极差还是列极差,如果是行极差,索引是行标签,如果是列极差,索引是列名。

另外,对整个DataFrame运用apply的时候,要保证所有的字段都是符合作为参数的函数要求才可以,比如在列子中求极值得保证所有字段都是数值型才行,如果整个DataFrame不能满足要求,可以把符合要求的字段切出来再应用apply。

如果有需要,也可以把求的结果添加到原表当中。

apply应用到Series中

如这个例子,将A列的所有元素转换数据类型,从整型转换成浮点型:

总结一下,apply运用到整个DataFrame中可以执行整列或者整行的运算,运用到Series中,执行的是对每个元素的运算。

这个运算,map也可以实现。

map

首先,还是看下官方文档是怎么说的:

· 根据输入对应关系映射Series的值。

· 用于将Series中的每个值替换为另一个值,该值可以从函数dict或Series派生。

官方指定,map是应用于Seriesd 的,参数可以是函数也可以字典。

首先,还是要有一个表:

现在需要将性别转换成0和1,女为0,男为1,这个时候千万不要写循环啊,map()可以轻松实现,先来试试函数的形式:

def gender(x): G = 1 if x == "男" else 0 return G

map的参数除了可以是参数,也可以是字典,这和apply对参数的要求不同:

applymap

最后来看一下applymap,还是先搬上官方文档:

· 将函数应用于元素的数据框。

· 此方法应用一个函数,该函数接受并返回一个标量到DataFrame的每个元素。

简单说,applymap是把函数应用到DataFrame中的每个元素上的,要和apply对整列或者整行进行的操作区分开啊,apply想要直接对每个元素进行操作,得单独提取出Series才可以实现,不能直接再整个DataFrame上执行。下边来看个例子。

还是开头的那个表:

现在要把每个元素的数据类型都转换成浮点型,applymap()就派上用场了:

最后再总结一下:

apply:

· 既可以用在DataFrame,也可以用到单独的Series中

· 运用到DataFrame时,是用到了整行或者整列上,不是逐一运用到每个元素上

· 运用到Series时,作用到每个元素上

· 第一个参数只接收python原生函数或者numpy中的函数

map

· 只能运用到Series的每个元素上

· 参数可以是函数也可以是字典,还可以是序列

applymap

· 只能应用在DataFrame中,并且是作用在DataFrame的每个元素中

· 参数只接收可调用的函数

常用的用法呢就是前边举的例子中的那些了,希望这边文章能帮助大家分清apply、map和applymap并能灵活运用它们。

更多优质内容及精彩资讯,点击【了解更多】进入!

相关推荐

方差分析简介(方差分析通俗理解)

介绍方差分析(ANOVA,AnalysisofVariance)是一种广泛使用的统计方法,用于比较两个或多个组之间的均值。单因素方差分析是方差分析的一种变体,旨在检测三个或更多分类组的均值是否存在...

正如404页面所预示,猴子正成为断网元凶--吧嗒吧嗒真好吃

吧嗒吧嗒,绘图:MakiNaro你可以通过加热、冰冻、水淹、模塑、甚至压溃压力来使网络光缆硬化。但用猴子显然是不行的。光缆那新挤压成型的塑料外皮太尼玛诱人了,无法阻挡一场试吃盛宴的举行。印度政府正...

Python数据可视化:箱线图多种库画法

概念箱线图通过数据的四分位数来展示数据的分布情况。例如:数据的中心位置,数据间的离散程度,是否有异常值等。把数据从小到大进行排列并等分成四份,第一分位数(Q1),第二分位数(Q2)和第三分位数(Q3)...

多组独立(完全随机设计)样本秩和检验的SPSS操作教程及结果解读

作者/风仕在上一期,我们已经讲完了两组独立样本秩和检验的SPSS操作教程及结果解读,这期开始讲多组独立样本秩和检验,我们主要从多组独立样本秩和检验介绍、两组独立样本秩和检验使用条件及案例的SPSS操作...

方差分析 in R语言 and Excel(方差分析r语言例题)

今天来写一篇实际中比较实用的分析方法,方差分析。通过方差分析,我们可以确定组别之间的差异是否超出了由于随机因素引起的差异范围。方差分析分为单因素方差分析和多因素方差分析,这一篇先介绍一下单因素方差分析...

可视化:前端数据可视化插件大盘点 图表/图谱/地图/关系图

前端数据可视化插件大盘点图表/图谱/地图/关系图全有在大数据时代,很多时候我们需要在网页中显示数据统计报表,从而能很直观地了解数据的走向,开发人员很多时候需要使用图表来表现一些数据。随着Web技术的...

matplotlib 必知的 15 个图(matplotlib各种图)

施工专题,我已完成20篇,施工系列几乎覆盖Python完整技术栈,目标只总结实践中最实用的东西,直击问题本质,快速帮助读者们入门和进阶:1我的施工计划2数字专题3字符串专题4列表专题5流程控制专题6编...

R ggplot2常用图表绘制指南(ggplot2绘制折线图)

ggplot2是R语言中强大的数据可视化包,基于“图形语法”(GrammarofGraphics),通过分层方式构建图表。以下是常用图表命令的详细指南,涵盖基本语法、常见图表类型及示例,适合...

Python数据可视化:从Pandas基础到Seaborn高级应用

数据可视化是数据分析中不可或缺的一环,它能帮助我们直观理解数据模式和趋势。本文将全面介绍Python中最常用的三种可视化方法。Pandas内置绘图功能Pandas基于Matplotlib提供了简洁的绘...

Python 数据可视化常用命令备忘录

本文提供了一个全面的Python数据可视化备忘单,适用于探索性数据分析(EDA)。该备忘单涵盖了单变量分析、双变量分析、多变量分析、时间序列分析、文本数据分析、可视化定制以及保存与显示等内容。所...

统计图的种类(统计图的种类及特点图片)

统计图是利用几何图形或具体事物的形象和地图等形式来表现社会经济现象数量特征和数量关系的图形。以下是几种常见的统计图类型及其适用场景:1.条形图(BarChart)条形图是用矩形条的高度或长度来表示...

实测,大模型谁更懂数据可视化?(数据可视化和可视化分析的主要模型)

大家好,我是Ai学习的老章看论文时,经常看到漂亮的图表,很多不知道是用什么工具绘制的,或者很想复刻类似图表。实测,大模型LaTeX公式识别,出乎预料前文,我用Kimi、Qwen-3-235B...

通过AI提示词让Deepseek快速生成各种类型的图表制作

在数据分析和可视化领域,图表是传达信息的重要工具。然而,传统图表制作往往需要专业的软件和一定的技术知识。本文将介绍如何通过AI提示词,利用Deepseek快速生成各种类型的图表,包括柱状图、折线图、饼...

数据可视化:解析箱线图(box plot)

箱线图/盒须图(boxplot)是数据分布的图形表示,由五个摘要组成:最小值、第一四分位数(25th百分位数)、中位数、第三四分位数(75th百分位数)和最大值。箱子代表四分位距(IQR)。IQR是...

[seaborn] seaborn学习笔记1-箱形图Boxplot

1箱形图Boxplot(代码下载)Boxplot可能是最常见的图形类型之一。它能够很好表示数据中的分布规律。箱型图方框的末尾显示了上下四分位数。极线显示最高和最低值,不包括异常值。seaborn中...