百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

Django中的请求和响应

bigegpt 2024-09-20 13:53 3 浏览

Django使用请求和响应对象在系统中传递状态。

所谓请求和响应就是一种对话式或者说应答式的交互过程。请求是指用户使用浏览器通过http协议发送给服务端的数据,响应是指服务端接收到请求后做一些逻辑处理后回复给浏览器的数据。常用的方法就是GET,POST,HEAD,DELETE,TRACE等。

Django中的请求

Django中的请求实际就是视图函数view中的第一个参数,就是固定为request,当然参数名其实可以任意修改,其为HttpRquest对象,Django接收到http请求后,会根据请求数据创建HttpRequest对象,该对象涵盖了很多内容,包括属性,其涵盖了请求的相关信息。

这里介绍几个常用的属性:

  • path_info:URL字符串
  • method:请求方法,比如‘GET’和‘POST’方法等
  • GET:QueryDict查询字典的对象,包含get请求方法的所有数据
  • POST:QueryDict查询字典的对象,包含post请求方法的所有数据
  • FILES:类似字典的对象,包含所有的上传文件的信息

Django中的响应

Django响应中,经常使用的是HttpResponse函数,其参数调用格式如下:

HttpResponse(content=响应体,contenttype=响应体数据类型,status=状态码)

常见的contentType有:

  • text/html 默认的html
  • text/plain 纯文本
  • text/css css 文件
  • text/javascript js文件
  • multipart/form-data 文件提取
  • application/json json传输
  • application/xml xml文件

演示:Django中GET请求

先在urls.py中增加一个路由:

到views.py中写对应的方法:

运行起来后,调用一下,我这边使用的是postman:

服务端接收到的信息:

在已知客户端会发送某些指定参数的情况下,其实也可以通过指定key值来获取传参:

演示:Django中POST请求

继续使用前面那个something的路由吧,直接在views.py中改一下:

这个时候其实直接使用postman是无法请求成功的,因为django全局发送post请求均需要字符串验证。如果没有验证,请求就会报这个错误:

除了在客户端添加验证之外,其实在服务端也可以关闭这个验证,第一种关闭验证的方法是到settings.py中找到这一个引用并将其注释:

这样所有请求都不会进行字符串校验了。第二种方法是单独将某一个请求的字符串校验进行关闭,像这样:

当然也可以在提交的表单中加入校验的字符串,比如这样:

上面三种方法都是可以的,运行之后,发起请求后,在服务端就会收到这些信息:

我们为了方便,一般都会对一个路由地址做多种请求类型的区分,例如这样:

总结

Django中的请求和响应基本就是这样,虽然请求的类型还有很多,但是使用方式没什么太大的区别。

相关推荐

方差分析简介(方差分析通俗理解)

介绍方差分析(ANOVA,AnalysisofVariance)是一种广泛使用的统计方法,用于比较两个或多个组之间的均值。单因素方差分析是方差分析的一种变体,旨在检测三个或更多分类组的均值是否存在...

正如404页面所预示,猴子正成为断网元凶--吧嗒吧嗒真好吃

吧嗒吧嗒,绘图:MakiNaro你可以通过加热、冰冻、水淹、模塑、甚至压溃压力来使网络光缆硬化。但用猴子显然是不行的。光缆那新挤压成型的塑料外皮太尼玛诱人了,无法阻挡一场试吃盛宴的举行。印度政府正...

Python数据可视化:箱线图多种库画法

概念箱线图通过数据的四分位数来展示数据的分布情况。例如:数据的中心位置,数据间的离散程度,是否有异常值等。把数据从小到大进行排列并等分成四份,第一分位数(Q1),第二分位数(Q2)和第三分位数(Q3)...

多组独立(完全随机设计)样本秩和检验的SPSS操作教程及结果解读

作者/风仕在上一期,我们已经讲完了两组独立样本秩和检验的SPSS操作教程及结果解读,这期开始讲多组独立样本秩和检验,我们主要从多组独立样本秩和检验介绍、两组独立样本秩和检验使用条件及案例的SPSS操作...

方差分析 in R语言 and Excel(方差分析r语言例题)

今天来写一篇实际中比较实用的分析方法,方差分析。通过方差分析,我们可以确定组别之间的差异是否超出了由于随机因素引起的差异范围。方差分析分为单因素方差分析和多因素方差分析,这一篇先介绍一下单因素方差分析...

可视化:前端数据可视化插件大盘点 图表/图谱/地图/关系图

前端数据可视化插件大盘点图表/图谱/地图/关系图全有在大数据时代,很多时候我们需要在网页中显示数据统计报表,从而能很直观地了解数据的走向,开发人员很多时候需要使用图表来表现一些数据。随着Web技术的...

matplotlib 必知的 15 个图(matplotlib各种图)

施工专题,我已完成20篇,施工系列几乎覆盖Python完整技术栈,目标只总结实践中最实用的东西,直击问题本质,快速帮助读者们入门和进阶:1我的施工计划2数字专题3字符串专题4列表专题5流程控制专题6编...

R ggplot2常用图表绘制指南(ggplot2绘制折线图)

ggplot2是R语言中强大的数据可视化包,基于“图形语法”(GrammarofGraphics),通过分层方式构建图表。以下是常用图表命令的详细指南,涵盖基本语法、常见图表类型及示例,适合...

Python数据可视化:从Pandas基础到Seaborn高级应用

数据可视化是数据分析中不可或缺的一环,它能帮助我们直观理解数据模式和趋势。本文将全面介绍Python中最常用的三种可视化方法。Pandas内置绘图功能Pandas基于Matplotlib提供了简洁的绘...

Python 数据可视化常用命令备忘录

本文提供了一个全面的Python数据可视化备忘单,适用于探索性数据分析(EDA)。该备忘单涵盖了单变量分析、双变量分析、多变量分析、时间序列分析、文本数据分析、可视化定制以及保存与显示等内容。所...

统计图的种类(统计图的种类及特点图片)

统计图是利用几何图形或具体事物的形象和地图等形式来表现社会经济现象数量特征和数量关系的图形。以下是几种常见的统计图类型及其适用场景:1.条形图(BarChart)条形图是用矩形条的高度或长度来表示...

实测,大模型谁更懂数据可视化?(数据可视化和可视化分析的主要模型)

大家好,我是Ai学习的老章看论文时,经常看到漂亮的图表,很多不知道是用什么工具绘制的,或者很想复刻类似图表。实测,大模型LaTeX公式识别,出乎预料前文,我用Kimi、Qwen-3-235B...

通过AI提示词让Deepseek快速生成各种类型的图表制作

在数据分析和可视化领域,图表是传达信息的重要工具。然而,传统图表制作往往需要专业的软件和一定的技术知识。本文将介绍如何通过AI提示词,利用Deepseek快速生成各种类型的图表,包括柱状图、折线图、饼...

数据可视化:解析箱线图(box plot)

箱线图/盒须图(boxplot)是数据分布的图形表示,由五个摘要组成:最小值、第一四分位数(25th百分位数)、中位数、第三四分位数(75th百分位数)和最大值。箱子代表四分位距(IQR)。IQR是...

[seaborn] seaborn学习笔记1-箱形图Boxplot

1箱形图Boxplot(代码下载)Boxplot可能是最常见的图形类型之一。它能够很好表示数据中的分布规律。箱型图方框的末尾显示了上下四分位数。极线显示最高和最低值,不包括异常值。seaborn中...