Python 实现图像快速傅里叶变换和离散余弦变换
bigegpt 2024-09-25 14:37 3 浏览
图像的正交变换在数字图像的处理与分析中起着很重要的作用,被广泛应用于图像增强、去噪、压缩编码等众多领域。本文手工实现了 二维离散傅里叶变换 和 二维离散余弦变换 算法,并在多个图像样本上进行测试,以探究二者的变换效果。
1. 傅里叶变换
实验原理
对一幅图像进行 离散傅里叶变换 (DFT),可以得到图像信号的傅里叶频谱。二维 DFT 的变换及逆变换公式如下:
DFT 尽管解决了频域离散化的问题,但运算量太大。从公式中可以看到,有两个嵌套的求和符号,显然直接计算的复杂度为 \(O(n^2)\) 。为了加快傅里叶变换的运算速度,后人提出 快速傅里叶变换 (FFT),即蝶形算法,将计算 DFT 的复杂度降低到了 \(O(n\log n)\) 。
FFT 利用傅里叶变换的数学性质,采用分治的思想,将一个 \(N\) 点的 FFT,变成两个 \(N/2\) 点的 FFT。以一维 FFT 为例,可以表示如下:
其中, \(G(k)\) 是 \(x(k)\) 的偶数点的 \(N/2\) 点的 FFT, \(H(k)\) 是 \(x(k)\) 的奇数点的 \(N/2\) 点的 FFT。
这样,通过将原问题不断分解为两个一半规模的子问题,然后计算相应的蝶形运算单元,最终得以完成整个 FFT。
算法步骤
本次实验中,一维 FFT 采用递归实现,且仅支持长度为 2 的整数幂的情况。
算法步骤如下:
- 检查图像的尺寸,如果不是 2 的整数幂则直接退出。
- 对图像的灰度值进行归一化。
- 对图像的每一行执行一维 FFT,并保存为中间结果。
- 对上一步结果中的每一列执行一维 FFT,返回变换结果。
- 将零频分量移到频谱中心,并求绝对值进行可视化。
- 对中心化后的结果进行对数变换,以改善视觉效果。
主要代码
一维 FFT
def fft(x):
n = len(x)
if n == 2:
return [x[0] + x[1], x[0] - x[1]]
G = fft(x[::2])
H = fft(x[1::2])
W = np.exp(-2j * np.pi * np.arange(n//2) / n)
WH = W * H
X = np.concatenate([G + WH, G - WH])
return X
二维 FFT
def fft2(img):
h, w = img.shape
if ((h-1) & h) or ((w-1) & w):
print('Image size not a power of 2')
return img
img = normalize(img)
res = np.zeros([h, w], 'complex128')
for i in range(h):
res[i, :] = fft(img[i, :])
for j in range(w):
res[:, j] = fft(res[:, j])
return res
零频分量中心化
def fftshift(img):
# swap the first and third quadrants, and the second and fourth quadrants
h, w = img.shape
h_mid, w_mid = h//2, w//2
res = np.zeros([h, w], 'complex128')
res[:h_mid, :w_mid] = img[h_mid:, w_mid:]
res[:h_mid, w_mid:] = img[h_mid:, :w_mid]
res[h_mid:, :w_mid] = img[:h_mid, w_mid:]
res[h_mid:, w_mid:] = img[:h_mid, :w_mid]
return res
运行结果
2. 余弦变换
实验原理
当一个函数为偶函数时,其傅立叶变换的虚部为零,因而不需要计算,只计算余弦项变换,这就是余弦变换。 离散余弦变换 (DCT)的变换核为实数的余弦函数,因而计算速度比变换核为指数的 DFT 要快得多。
一维离散余弦变换与离散傅里叶变换具有相似性,对离散傅里叶变换进行下式的修改:
式中
由上式可见, \(\sum\limits_{x=0}^{2M-1}f_e(x)e^{\frac{-j2ux\pi}{2M}}\) 是 \(2M\) 个点的傅里叶变换,因此在做离散余弦变换时,可将其拓展为 \(2M\) 个点,然后对其做离散傅里叶变换,取傅里叶变换的实部就是所要的离散余弦变换。
算法步骤
基于上述原理,二维 DCT 的实现重用了上文中的一维 FFT 函数,并根据公式做了一些修改。
算法步骤如下:
- 检查图像的尺寸,如果不是 2 的整数幂则直接退出。
- 对图像的灰度值进行归一化。
- 对图像的每一行进行延拓,执行一维 FFT 后取实部,乘以公式中的系数,并保存为中间结果。
- 对上一步结果中的每一列进行延拓,执行一维 FFT 后取实部,乘以公式中的系数,返回变换结果。
- 对结果求绝对值,并进行对数变换,以改善视觉效果。
主要代码
二维 DCT
def dct2(img):
h, w = img.shape
if ((h-1) & h) or ((w-1) & w):
print('Image size not a power of 2')
return img
img = normalize(img)
res = np.zeros([h, w], 'complex128')
for i in range(h):
res[i, :] = fft(np.concatenate([img[i, :], np.zeros(w)]))[:w]
res[i, :] = np.real(res[i, :]) * np.sqrt(2 / w)
res[i, 0] /= np.sqrt(2)
for j in range(w):
res[:, j] = fft(np.concatenate([res[:, j], np.zeros(h)]))[:h]
res[:, j] = np.real(res[:, j]) * np.sqrt(2 / h)
res[0, j] /= np.sqrt(2)
return res
运行结果
源码请参考扩展链接
相关推荐
- C#.NET Autofac 详解(c# autoit)
-
简介Autofac是一个成熟的、功能丰富的.NET依赖注入(DI)容器。相比于内置容器,它额外提供:模块化注册、装饰器(Decorator)、拦截器(Interceptor)、强o的属性/方法注...
- webapi 全流程(webapi怎么部署)
-
C#中的WebAPIMinimalApi没有控制器,普通api有控制器,MinimalApi是直达型,精简了很多中间代码,广泛适用于微服务架构MinimalApi一切都在组控制台应用程序类【Progr...
- .NET外挂系列:3. 了解 harmony 中灵活的纯手工注入方式
-
一:背景1.讲故事上一篇我们讲到了注解特性,harmony在内部提供了20个HarmonyPatch重载方法尽可能的让大家满足业务开发,那时候我也说了,特性虽然简单粗暴,但只能解决95%...
- C# 使用SemanticKernel调用本地大模型deepseek
-
一、先使用ollama部署好deepseek大模型。具体部署请看前面的头条使用ollama进行本地化部署deepseek大模型二、创建一个空的控制台dotnetnewconsole//添加依赖...
- C#.NET 中间件详解(.net core中间件use和run)
-
简介中间件(Middleware)是ASP.NETCore的核心组件,用于处理HTTP请求和响应的管道机制。它是基于管道模型的轻量级、模块化设计,允许开发者在请求处理过程中插入自定义逻辑。...
- IoC 自动注入:让依赖注册不再重复劳动
-
在ASP.NETCore中,IoC(控制反转)功能通过依赖注入(DI)实现。ASP.NETCore有一个内置的依赖注入容器,可以自动完成依赖注入。我们可以结合反射、特性或程序集扫描来实现自动...
- C#.NET 依赖注入详解(c#依赖注入的三种方式)
-
简介在C#.NET中,依赖注入(DependencyInjection,简称DI)是一种设计模式,用于实现控制反转(InversionofControl,IoC),以降低代码耦合、提高可...
- C#从零开始实现一个特性的自动注入功能
-
在现代软件开发中,依赖注入(DependencyInjection,DI)是实现松耦合、模块化和可测试代码的一个重要实践。C#提供了优秀的DI容器,如ASP.NETCore中自带的Micr...
- C#.NET 仓储模式详解(c#仓库货物管理系统)
-
简介仓储模式(RepositoryPattern)是一种数据访问抽象模式,它在领域模型和数据访问层之间创建了一个隔离层,使得领域模型无需直接与数据访问逻辑交互。仓储模式的核心思想是将数据访问逻辑封装...
- C#.NET 泛型详解(c# 泛型 滥用)
-
简介泛型(Generics)是指在类型或方法定义时使用类型参数,以实现类型安全、可重用和高性能的数据结构与算法为什么需要泛型类型安全防止“装箱/拆箱”带来的性能损耗,并在编译时检测类型错误。可重用同一...
- 数据分析-相关性分析(相关性 分析)
-
相关性分析是一种统计方法,用于衡量两个或多个变量之间的关系强度和方向。它通过计算相关系数来量化变量间的线性关系,从而帮助理解变量之间的相互影响。相关性分析常用于数据探索和假设检验,是数据分析和统计建模...
- geom_smooth()函数-R语言ggplot2快速入门18
-
在每节,先运行以下这几行程序。library(ggplot2)library(ggpubr)library(ggtext)#用于个性化图表library(dplyr)#用于数据处理p...
- 规范申报易错要素解析(规范申报易错要素解析)
-
为什么要规范申报?规范申报是以满足海关监管、征税、统计等工作为目的,纳税义务人及其代理人依法向海关如实申报的行为,也是海关审接单环节依法监管的重要工作。企业申报的内容须符合《中华人民共和国海关进出口货...
- 「Eurora」海关编码归类 全球海关编码查询 关务服务
-
海关编码是什么? 海关编码即HS编码,为编码协调制度的简称。 其全称为《商品名称及编码协调制度的国际公约》(InternationalConventionforHarmonizedCo...
- 9月1日起,河南省税务部门对豆制品加工业试行新政7类豆制品均适用投入产出法
-
全媒体记者杨晓川报道9月2日,记者从税务部门获悉,为减轻纳税人税收负担,完善农产品增值税进项税额抵扣机制,根据相关规定,结合我省实际情况,经广泛调查研究和征求意见,从9月1日起,我省税务部门对豆制品...
- 一周热门
- 最近发表
- 标签列表
-
- mybatiscollection (79)
- mqtt服务器 (88)
- keyerror (78)
- c#map (65)
- xftp6 (83)
- bt搜索 (75)
- c#var (76)
- xcode-select (66)
- mysql授权 (74)
- 下载测试 (70)
- linuxlink (65)
- pythonwget (67)
- androidinclude (65)
- libcrypto.so (74)
- linux安装minio (74)
- ubuntuunzip (67)
- vscode使用技巧 (83)
- secure-file-priv (67)
- vue阻止冒泡 (67)
- jquery跨域 (68)
- php写入文件 (73)
- kafkatools (66)
- mysql导出数据库 (66)
- jquery鼠标移入移出 (71)
- 取小数点后两位的函数 (73)