百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

Python 实现图像快速傅里叶变换和离散余弦变换

bigegpt 2024-09-25 14:37 3 浏览

图像的正交变换在数字图像的处理与分析中起着很重要的作用,被广泛应用于图像增强、去噪、压缩编码等众多领域。本文手工实现了 二维离散傅里叶变换二维离散余弦变换 算法,并在多个图像样本上进行测试,以探究二者的变换效果。

1. 傅里叶变换

实验原理

对一幅图像进行 离散傅里叶变换 (DFT),可以得到图像信号的傅里叶频谱。二维 DFT 的变换及逆变换公式如下:

DFT 尽管解决了频域离散化的问题,但运算量太大。从公式中可以看到,有两个嵌套的求和符号,显然直接计算的复杂度为 \(O(n^2)\) 。为了加快傅里叶变换的运算速度,后人提出 快速傅里叶变换 (FFT),即蝶形算法,将计算 DFT 的复杂度降低到了 \(O(n\log n)\) 。

FFT 利用傅里叶变换的数学性质,采用分治的思想,将一个 \(N\) 点的 FFT,变成两个 \(N/2\) 点的 FFT。以一维 FFT 为例,可以表示如下:

其中, \(G(k)\) 是 \(x(k)\) 的偶数点的 \(N/2\) 点的 FFT, \(H(k)\) 是 \(x(k)\) 的奇数点的 \(N/2\) 点的 FFT。

这样,通过将原问题不断分解为两个一半规模的子问题,然后计算相应的蝶形运算单元,最终得以完成整个 FFT。

算法步骤

本次实验中,一维 FFT 采用递归实现,且仅支持长度为 2 的整数幂的情况。

算法步骤如下:

  1. 检查图像的尺寸,如果不是 2 的整数幂则直接退出。
  2. 对图像的灰度值进行归一化。
  3. 对图像的每一行执行一维 FFT,并保存为中间结果。
  4. 对上一步结果中的每一列执行一维 FFT,返回变换结果。
  5. 将零频分量移到频谱中心,并求绝对值进行可视化。
  6. 对中心化后的结果进行对数变换,以改善视觉效果。

主要代码

一维 FFT

def fft(x):
    n = len(x)
    if n == 2:
        return [x[0] + x[1], x[0] - x[1]]
    
    G = fft(x[::2])
    H = fft(x[1::2])
    W = np.exp(-2j * np.pi * np.arange(n//2) / n)
    WH = W * H
    X = np.concatenate([G + WH, G - WH])
    return X

二维 FFT

def fft2(img):
    h, w = img.shape
    if ((h-1) & h) or ((w-1) & w):
        print('Image size not a power of 2')
        return img
    
    img = normalize(img)
    res = np.zeros([h, w], 'complex128')
    for i in range(h):
        res[i, :] = fft(img[i, :])
    for j in range(w):
        res[:, j] = fft(res[:, j])
    return res

零频分量中心化

def fftshift(img):
    # swap the first and third quadrants, and the second and fourth quadrants
    h, w = img.shape
    h_mid, w_mid = h//2, w//2
    res = np.zeros([h, w], 'complex128')
    res[:h_mid, :w_mid] = img[h_mid:, w_mid:]
    res[:h_mid, w_mid:] = img[h_mid:, :w_mid]
    res[h_mid:, :w_mid] = img[:h_mid, w_mid:]
    res[h_mid:, w_mid:] = img[:h_mid, :w_mid]
    return res

运行结果

2. 余弦变换

实验原理

当一个函数为偶函数时,其傅立叶变换的虚部为零,因而不需要计算,只计算余弦项变换,这就是余弦变换。 离散余弦变换 (DCT)的变换核为实数的余弦函数,因而计算速度比变换核为指数的 DFT 要快得多。

一维离散余弦变换与离散傅里叶变换具有相似性,对离散傅里叶变换进行下式的修改:

式中

由上式可见, \(\sum\limits_{x=0}^{2M-1}f_e(x)e^{\frac{-j2ux\pi}{2M}}\) 是 \(2M\) 个点的傅里叶变换,因此在做离散余弦变换时,可将其拓展为 \(2M\) 个点,然后对其做离散傅里叶变换,取傅里叶变换的实部就是所要的离散余弦变换。

算法步骤

基于上述原理,二维 DCT 的实现重用了上文中的一维 FFT 函数,并根据公式做了一些修改。

算法步骤如下:

  1. 检查图像的尺寸,如果不是 2 的整数幂则直接退出。
  2. 对图像的灰度值进行归一化。
  3. 对图像的每一行进行延拓,执行一维 FFT 后取实部,乘以公式中的系数,并保存为中间结果。
  4. 对上一步结果中的每一列进行延拓,执行一维 FFT 后取实部,乘以公式中的系数,返回变换结果。
  5. 对结果求绝对值,并进行对数变换,以改善视觉效果。

主要代码

二维 DCT

def dct2(img):
    h, w = img.shape
    if ((h-1) & h) or ((w-1) & w):
        print('Image size not a power of 2')
        return img
    
    img = normalize(img)
    res = np.zeros([h, w], 'complex128')
    for i in range(h):
        res[i, :] = fft(np.concatenate([img[i, :], np.zeros(w)]))[:w]
        res[i, :] = np.real(res[i, :]) * np.sqrt(2 / w)
        res[i, 0] /= np.sqrt(2)
    for j in range(w):
        res[:, j] = fft(np.concatenate([res[:, j], np.zeros(h)]))[:h]
        res[:, j] = np.real(res[:, j]) * np.sqrt(2 / h)
        res[0, j] /= np.sqrt(2)
    return res

运行结果

源码请参考扩展链接

相关推荐

C#.NET Autofac 详解(c# autoit)

简介Autofac是一个成熟的、功能丰富的.NET依赖注入(DI)容器。相比于内置容器,它额外提供:模块化注册、装饰器(Decorator)、拦截器(Interceptor)、强o的属性/方法注...

webapi 全流程(webapi怎么部署)

C#中的WebAPIMinimalApi没有控制器,普通api有控制器,MinimalApi是直达型,精简了很多中间代码,广泛适用于微服务架构MinimalApi一切都在组控制台应用程序类【Progr...

.NET外挂系列:3. 了解 harmony 中灵活的纯手工注入方式

一:背景1.讲故事上一篇我们讲到了注解特性,harmony在内部提供了20个HarmonyPatch重载方法尽可能的让大家满足业务开发,那时候我也说了,特性虽然简单粗暴,但只能解决95%...

C# 使用SemanticKernel调用本地大模型deepseek

一、先使用ollama部署好deepseek大模型。具体部署请看前面的头条使用ollama进行本地化部署deepseek大模型二、创建一个空的控制台dotnetnewconsole//添加依赖...

C#.NET 中间件详解(.net core中间件use和run)

简介中间件(Middleware)是ASP.NETCore的核心组件,用于处理HTTP请求和响应的管道机制。它是基于管道模型的轻量级、模块化设计,允许开发者在请求处理过程中插入自定义逻辑。...

IoC 自动注入:让依赖注册不再重复劳动

在ASP.NETCore中,IoC(控制反转)功能通过依赖注入(DI)实现。ASP.NETCore有一个内置的依赖注入容器,可以自动完成依赖注入。我们可以结合反射、特性或程序集扫描来实现自动...

C#.NET 依赖注入详解(c#依赖注入的三种方式)

简介在C#.NET中,依赖注入(DependencyInjection,简称DI)是一种设计模式,用于实现控制反转(InversionofControl,IoC),以降低代码耦合、提高可...

C#从零开始实现一个特性的自动注入功能

在现代软件开发中,依赖注入(DependencyInjection,DI)是实现松耦合、模块化和可测试代码的一个重要实践。C#提供了优秀的DI容器,如ASP.NETCore中自带的Micr...

C#.NET 仓储模式详解(c#仓库货物管理系统)

简介仓储模式(RepositoryPattern)是一种数据访问抽象模式,它在领域模型和数据访问层之间创建了一个隔离层,使得领域模型无需直接与数据访问逻辑交互。仓储模式的核心思想是将数据访问逻辑封装...

C#.NET 泛型详解(c# 泛型 滥用)

简介泛型(Generics)是指在类型或方法定义时使用类型参数,以实现类型安全、可重用和高性能的数据结构与算法为什么需要泛型类型安全防止“装箱/拆箱”带来的性能损耗,并在编译时检测类型错误。可重用同一...

数据分析-相关性分析(相关性 分析)

相关性分析是一种统计方法,用于衡量两个或多个变量之间的关系强度和方向。它通过计算相关系数来量化变量间的线性关系,从而帮助理解变量之间的相互影响。相关性分析常用于数据探索和假设检验,是数据分析和统计建模...

geom_smooth()函数-R语言ggplot2快速入门18

在每节,先运行以下这几行程序。library(ggplot2)library(ggpubr)library(ggtext)#用于个性化图表library(dplyr)#用于数据处理p...

规范申报易错要素解析(规范申报易错要素解析)

为什么要规范申报?规范申报是以满足海关监管、征税、统计等工作为目的,纳税义务人及其代理人依法向海关如实申报的行为,也是海关审接单环节依法监管的重要工作。企业申报的内容须符合《中华人民共和国海关进出口货...

「Eurora」海关编码归类 全球海关编码查询 关务服务

  海关编码是什么?  海关编码即HS编码,为编码协调制度的简称。  其全称为《商品名称及编码协调制度的国际公约》(InternationalConventionforHarmonizedCo...

9月1日起,河南省税务部门对豆制品加工业试行新政7类豆制品均适用投入产出法

全媒体记者杨晓川报道9月2日,记者从税务部门获悉,为减轻纳税人税收负担,完善农产品增值税进项税额抵扣机制,根据相关规定,结合我省实际情况,经广泛调查研究和征求意见,从9月1日起,我省税务部门对豆制品...