百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

机器学习还能预测心血管疾病?没错,我用python写出来了

bigegpt 2024-09-29 09:22 3 浏览

CDA数据分析师 出品

作者:Mika

数据:真达

后期:Mika

【导读】手把手教你如何用python写出心血管疾病预测模型。

全球每年约有1700万人死于心血管疾病,当中主要表现为心肌梗死和心力衰竭。当心脏不能泵出足够的血液来满足人体的需要时,就会发生心力衰竭,通常由糖尿病、高血压或其他心脏疾病引起。

在检测心血管疾病的早期症状时,机器学习就能派上用场了。通过患者的电子病历,可以记录患者的症状、身体特征、临床实验室测试值,从而进行生物统计分析,这能够发现那些医生无法检测到的模式和相关性。

尤其通过机器学习,根据数据就能预测患者的存活率,今天我们就教大家如何用Python写一个心血管疾病的预测模型。

研究背景和数据来源

我们用到的数据集来自Davide Chicco和Giuseppe Jurman发表的论文:《机器学习可以仅通过血肌酐和射血分数来预测心力衰竭患者的生存率》

他们收集整理了299名心力衰竭患者的医疗记录,这些患者数据来自2015年4月至12月间巴基斯坦费萨拉巴德心脏病研究所和费萨拉巴德联合医院。这些患者由105名女性和194名男性组成,年龄在40至95岁之间。所有299例患者均患有左心室收缩功能不全,并曾出现过心力衰竭。

Davide和Giuseppe应用了多个机器学习分类器来预测患者的生存率,并根据最重要的危险因素对特征进行排序。同时还利用传统的生物统计学测试进行了另一种特征排序分析,并将这些结果与机器学习算法提供的结果进行比较。

他们分析对比了心力衰竭患者的一系列数据,最终发现根据血肌酐和射血分数这两项数据能够很好的预测心力衰竭患者的存活率。

今天我们就教教大家,如果根据这共13个字段的299 条病人诊断记录,用Python写出预测心力衰竭患者存活率的预测模型。

下面是具体的步骤和关键代码。

01、数据理解

数据取自于kaggle平台分享的心血管疾病数据集,共有13个字段299 条病人诊断记录。具体的字段概要如下:

02、数据读入和初步处理

首先导入所需包。

# 数据整理
import numpy as np 
import pandas as pd 

# 可视化
import matplotlib.pyplot as plt
import seaborn as sns
import plotly as py 
import plotly.graph_objs as go
import plotly.express as px
import plotly.figure_factory as ff

# 模型建立
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier
import lightgbm

# 前处理
from sklearn.preprocessing import StandardScaler

# 模型评估
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.metrics import plot_confusion_matrix, confusion_matrix, f1_score


加载并预览数据集:

# 读入数据
df = pd.read_csv('./data/heart_failure.csv')
df.head() 

03、探索性分析

1. 描述性分析

df.describe().T

从上述描述性分析结果简单总结如下:

  • 是否死亡:平均的死亡率为32%;
  • 年龄分布:平均年龄60岁,最小40岁,最大95岁
  • 是否有糖尿病:有41.8%患有糖尿病
  • 是否有高血压:有35.1%患有高血压
  • 是否抽烟:有32.1%有抽烟

2. 目标变量

# 产生数据
death_num = df['DEATH_EVENT'].value_counts() 
death_num = death_num.reset_index()

# 饼图
fig = px.pie(death_num, names='index', values='DEATH_EVENT')
fig.update_layout(title_text='目标变量DEATH_EVENT的分布')  
py.offline.plot(fig, filename='./html/目标变量DEATH_EVENT的分布.html')

总共有299人,其中随访期未存活人数96人,占总人数的32.1%

3. 贫血

从图中可以看出,有贫血症状的患者死亡概率较高,为35.66%。

bar1 = draw_categorical_graph(df['anaemia'], df['DEATH_EVENT'], title='红细胞、血红蛋白减少和是否存活')
bar1.render('./html/红细胞血红蛋白减少和是否存活.html')  

4. 年龄

从直方图可以看出,在患心血管疾病的病人中年龄分布差异较大,表现趋势为年龄越大,生存比例越低、死亡的比例越高。

# 产生数据
surv = df[df['DEATH_EVENT'] == 0]['age']
not_surv = df[df['DEATH_EVENT'] == 1]['age']

hist_data = [surv, not_surv]
group_labels = ['Survived', 'Not Survived']

# 直方图
fig = ff.create_distplot(hist_data, group_labels, bin_size=0.5) 
fig.update_layout(title_text='年龄和生存状态关系') 
py.offline.plot(fig, filename='./html/年龄和生存状态关系.html')  

5. 年龄/性别

从分组统计和图形可以看出,不同性别之间生存状态没有显著性差异。在死亡的病例中,男性的平均年龄相对较高。

6. 年龄/抽烟

数据显示,整体来看,是否抽烟与生存与否没有显著相关性。但是当我们关注抽烟的人群中,年龄在50岁以下生存概率较高。

7. 磷酸肌酸激酶(CPK)

从直方图可以看出,血液中CPK酶的水平较高的人群死亡的概率较高。

8. 射血分数

射血分数代表了心脏的泵血功能,过高和过低水平下,生存的概率较低。

9. 血小板

血液中血小板(100~300)×10^9个/L,较高或较低的水平则代表不正常,存活的概率较低。

10. 血肌酐水平

血肌酐是检测肾功能的最常用指标,较高的指数代表肾功能不全、肾衰竭,有较高的概率死亡。

11. 血清钠水平

图形显示,血清钠较高或较低往往伴随着风险。

12. 相关性分析

从数值型属性的相关性图可以看出,变量之间没有显著的共线性关系。

num_df = df[['age', 'creatinine_phosphokinase', 'ejection_fraction', 'platelets',
                  'serum_creatinine', 'serum_sodium']]

plt.figure(figsize=(12, 12))
sns.heatmap(num_df.corr(), vmin=-1, cmap='coolwarm', linewidths=0.1, annot=True)
plt.title('Pearson correlation coefficient between numeric variables', fontdict={'fontsize': 15})
plt.show() 

04、特征筛选

我们使用统计方法进行特征筛选,目标变量DEATH_EVENT是分类变量时,当自变量是分类变量,使用卡方鉴定,自变量是数值型变量,使用方差分析。

# 划分X和y
X = df.drop('DEATH_EVENT', axis=1)
y = df['DEATH_EVENT'] 
from feature_selection import Feature_select

fs = Feature_select(num_method='anova', cate_method='kf') 
X_selected = fs.fit_transform(X, y) 
X_selected.head() 
2020 17:19:49 INFO attr select success!
After select attr: ['serum_creatinine', 'serum_sodium', 'ejection_fraction', 'age', 'time']

05、数据建模

首先划分训练集和测试集。

# 划分训练集和测试集
Features = X_selected.columns
X = df[Features] 
y = df["DEATH_EVENT"] 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, stratify=y, 
                                                    random_state=2020)
# 标准化
scaler = StandardScaler()
scaler_Xtrain = scaler.fit_transform(X_train) 
scaler_Xtest = scaler.fit_transform(X_test) 

lr = LogisticRegression()
lr.fit(scaler_Xtrain, y_train)
test_pred = lr.predict(scaler_Xtest)

# F1-score
print("F1_score of LogisticRegression is : ", round(f1_score(y_true=y_test, y_pred=test_pred),2)) 

我们使用决策树进行建模,设置特征选择标准为gini,树的深度为5。输出混淆矩阵图:在这个案例中,1类是我们关注的对象。

# DecisionTreeClassifier
clf = DecisionTreeClassifier(criterion='gini', max_depth=5, random_state=1)
clf.fit(X_train, y_train)
test_pred = clf.predict(X_test)  

# F1-score
print("F1_score of DecisionTreeClassifier is : ", round(f1_score(y_true=y_test, y_pred=test_pred),2)) 

# 绘图
plt.figure(figsize=(10, 7))
plot_confusion_matrix(clf, X_test, y_test, cmap='Blues') 
plt.title("DecisionTreeClassifier - Confusion Matrix", fontsize=15)
plt.xticks(range(2), ["Heart Not Failed","Heart Fail"], fontsize=12)
plt.yticks(range(2), ["Heart Not Failed","Heart Fail"], fontsize=12)
plt.show()  
F1_score of DecisionTreeClassifier is :  0.61
<Figure size 720x504 with 0 Axes>

使用网格搜索进行参数调优,优化标准为f1。

parameters = {'splitter':('best','random'),
              'criterion':("gini","entropy"),
              "max_depth":[*range(1, 20)],
             }

clf = DecisionTreeClassifier(random_state=1) 
GS = GridSearchCV(clf, param_grid=parameters, cv=10, scoring='f1', n_jobs=-1) 
GS.fit(X_train, y_train)

print(GS.best_params_) 
print(GS.best_score_) 
{'criterion': 'entropy', 'max_depth': 3, 'splitter': 'best'}
0.7638956305132776

使用最优的模型重新评估测试集效果:

test_pred = GS.best_estimator_.predict(X_test)

# F1-score
print("F1_score of DecisionTreeClassifier is : ", round(f1_score(y_true=y_test, y_pred=test_pred),2)) 

# 绘图
plt.figure(figsize=(10, 7))
plot_confusion_matrix(GS, X_test, y_test, cmap='Blues') 
plt.title("DecisionTreeClassifier - Confusion Matrix", fontsize=15)
plt.xticks(range(2), ["Heart Not Failed","Heart Fail"], fontsize=12)
plt.yticks(range(2), ["Heart Not Failed","Heart Fail"], fontsize=12)
plt.show() 

使用随机森林

# RandomForestClassifier
rfc = RandomForestClassifier(n_estimators=1000, random_state=1)

parameters = {'max_depth': np.arange(2, 20, 1) }
GS = GridSearchCV(rfc, param_grid=parameters, cv=10, scoring='f1', n_jobs=-1)  
GS.fit(X_train, y_train)  

print(GS.best_params_) 
print(GS.best_score_) 

test_pred = GS.best_estimator_.predict(X_test)

# F1-score
print("F1_score of RandomForestClassifier is : ", 
      round(f1_score(y_true=y_test, y_pred=test_pred),2)) 
{'max_depth': 3}
0.791157747481277
F1_score of RandomForestClassifier is :  0.53

使用Boosting

gbl = GradientBoostingClassifier(n_estimators=1000, random_state=1)

parameters = {'max_depth': np.arange(2, 20, 1) }
GS = GridSearchCV(gbl, param_grid=parameters, cv=10, scoring='f1', n_jobs=-1)  
GS.fit(X_train, y_train)  

print(GS.best_params_) 
print(GS.best_score_) 

# 测试集
test_pred = GS.best_estimator_.predict(X_test)

# F1-score
print("F1_score of GradientBoostingClassifier is : ", 
      round(f1_score(y_true=y_test, y_pred=test_pred),2))
{'max_depth': 3}
0.7288420428900305
F1_score of GradientBoostingClassifier is :  0.65

使用LGBMClassifier

lgb_clf = lightgbm.LGBMClassifier(boosting_type='gbdt', random_state=1)

parameters = {'max_depth': np.arange(2, 20, 1) }
GS = GridSearchCV(lgb_clf, param_grid=parameters, cv=10, scoring='f1', n_jobs=-1)  
GS.fit(X_train, y_train)  

print(GS.best_params_) 
print(GS.best_score_) 

# 测试集
test_pred = GS.best_estimator_.predict(X_test)

# F1-score
print("F1_score of LGBMClassifier is : ", round(f1_score(y_true=y_test, y_pred=test_pred),2)) 
{'max_depth': 2}
0.780378102289867
F1_score of LGBMClassifier is :  0.74

以下为各模型在测试集上的表现效果对比:

LogisticRegression:0.63

DecisionTree Classifier:0.73

Random Forest Classifier: 0.53

GradientBoosting Classifier: 0.65

LGBM Classifier: 0.74


参考链接:

Machine learning can predict survival of patients with heart failure from serum creatinine and ejection fraction alone

https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-020-1023-5#Abs1

相关推荐

有些人能留在你的心里,但不能留在你生活里。

有时候,你必须要明白,有些人能留在你的心里,但不能留在你生活里。Sometimes,youhavetorealize,Somepeoplecanstayinyourheart,...

Python学不会来打我(34)python函数爬取百度图片_附源码

随着人工智能和大数据的发展,图像数据的获取变得越来越重要。作为Python初学者,掌握如何从网页中抓取图片并保存到本地是一项非常实用的技能。本文将手把手教你使用Python函数编写一个简单的百度图片...

软网推荐:图像变变变 一“软”见分晓

当我们仅需要改变一些图片的分辨率、裁减尺寸、添加水印、标注文本、更改图片颜色,或将一种图片转换为另一种格式时,总比较讨厌使用一些大型的图像处理软件,尤其是当尚未安装此类软件时,更是如此。实际上,只需一...

首款WP8.1图片搜索应用,搜照片得资料

首款WP8.1图片搜索应用,搜照片得资料出处:IT之家原创(天际)2014-11-1114:32:15评论WP之家报道,《反向图片搜索》(ReverseImageSearch)是Window...

分享一组美图(图片来自头条)(头条美女头像)

...

盗墓笔记电视剧精美海报 盗墓笔记电视剧全集高清种子下载

出身“老九门”世家的吴邪,因身为考古学家的父母在某次保护国家文物行动时被国外盗墓团伙杀害,吴家为保护吴邪安全将他送去德国读书,因而吴邪对“考古”事业有着与生俱来的兴趣。在一次护宝过程中他偶然获得一张...

微软调整Win11 24H2装机策略:6月起36款预装应用改为完整版

IT之家7月16日消息,微软公司今天(7月16日)发布公告,表示自今年6月更新开始,已默认更新Windows1124H2和WindowsServer2025系统中预装...

谷歌手把手教你成为谣言终结者 | 域外

刺猬公社出品,必属原创,严禁转载。合作事宜,请联系微信号:yunlugongby贾宸琰编译、整理11月23日,由谷歌新闻实验室(GoogleNewsLab)联合Bellingcat、DigD...

NAS 部署网盘资源搜索神器:全网资源一键搜,免费看剧听歌超爽!

还在为找不到想看的电影、电视剧、音乐而烦恼?还在各个网盘之间来回切换,浪费大量时间?今天就教你如何在NAS上部署aipan-netdisk-search,一款强大的网盘资源搜索神器,让你全网资源...

使用 Docker Compose 简化 INFINI Console 与 Easysearch 环境搭建

前言回顾在上一篇文章《搭建持久化的INFINIConsole与Easysearch容器环境》中,我们详细介绍了如何使用基础的dockerrun命令,手动启动和配置INFINICon...

为庆祝杜特尔特到访,这个国家宣布全国放假?

(观察者网讯)近日,一篇流传甚广的脸书推文称,为庆祝杜特尔特去年访问印度,印度宣布全国放假,并举办了街头集会以示欢迎。菲媒对此做出澄清,这则消息其实是“假新闻”。据《菲律宾世界日报》2日报道,该贴子...

一课译词:毛骨悚然(毛骨悚然的意思是?)

PhotobyMoosePhotosfromPexels“毛骨悚然”,汉语成语,意思是毛发竖起,脊梁骨发冷;形容恐惧惊骇的样子(withone'shairstandingonend...

Bing Overtakes Google in China&#39;s PC Search Market, Fueled by AI and Microsoft Ecosystem

ScreenshotofBingChinahomepageTMTPOST--Inastunningturnintheglobalsearchenginerace,Mic...

找图不求人!6个以图搜图的识图网站推荐

【本文由小黑盒作者@crystalz于03月08日发布,转载请标明出处!】前言以图搜图,专业说法叫“反向图片搜索引擎”,是专门用来搜索相似图片、原始图片或图片来源的方法。常用来寻找现有图片的原始发布出...

浏览器功能和“油管”有什么关联?为什么要下载

现在有没有一款插件可以实现全部的功能,同时占用又小呢,主题主要是网站的一个外观,而且插件则主要是实现wordpress网站的一些功能,它不仅仅可以定制网站的外观,还可以实现很多插件的功能,搭载chro...