百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

「ECS最佳实践」基于多块云盘构建LVM逻辑卷

bigegpt 2024-10-05 13:45 3 浏览

一、LVM简介

LVM是逻辑盘卷管理(Logical Volume Manager)的简称,它是Linux环境下对磁盘分区进行管理的一种机制,LVM是建立在硬盘和分区之上的一个逻辑层,来提高磁盘分区管理的灵活性。

LVM最大的特点就是可以对磁盘进行动态管理。因为逻辑卷的大小是可以动态调整的,而且不会丢失现有的数据。如果我们新增加了硬盘,其也不会改变现有上层的逻辑卷。作为一个动态磁盘管理机制,逻辑卷技术大大提高了磁盘管理的灵活性。如果期望扩容云盘的IO能力,则可以通过将多块容量相同的云盘做RAID0。

图1:LVM逻辑示意图(图片来自于互联网)

二、创建LVM卷

2.1步骤一 创建物理卷PV

如下以5块云盘通过LVM创建弹性可扩展逻辑卷为例。

root@lvs06:~# lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
vda 252:0 0 40G 0 disk
└─vda1 252:1 0 40G 0 part /
vdb 252:16 0 1T 0 disk
vdc 252:32 0 1T 0 disk
vdd 252:48 0 1T 0 disk
vde 252:64 0 1T 0 disk
vdf 252:80 0 1T 0 disk
  • step1: 以root账号登录云服务器
  • step2:执行以下命令,为云盘创建PV卷
pvcreate <磁盘路径1> ... <磁盘路径N>

说明:此处需要填写云盘的设备名称,如果需要添加多个云盘,则可以添加多云盘设备名称,中间以空格间隔。如下以/dev/vdb, /dev/vdc,/dev/vdd,/dev/vde,/dev/vdf为例,执行结果如下:

root@lvs06:~# pvcreate /dev/vdb /dev/vdc /dev/vdd /dev/vde /dev/vdf
 Physical volume "/dev/vdb" successfully created.
 Physical volume "/dev/vdc" successfully created.
 Physical volume "/dev/vdd" successfully created.
 Physical volume "/dev/vde" successfully created.
 Physical volume "/dev/vdf" successfully created.
  • step3:执行以下命令,查看该服务器上物理卷(PV)信息:
lvmdiskscan | grep LVM

执行结果如下:

root@lvs06:~# lvmdiskscan | grep LVM
 /dev/vdb [ 1.00 TiB] LVM physical volume
 /dev/vdc [ 1.00 TiB] LVM physical volume
 /dev/vdd [ 1.00 TiB] LVM physical volume
 /dev/vde [ 1.00 TiB] LVM physical volume
 /dev/vdf [ 1.00 TiB] LVM physical volume
 5 LVM physical volume whole disks
 0 LVM physical volumes

2.2步骤二 创建卷组(VG)

  • step1:执行以下命令,创建卷组(VG)
vgcreate <卷组名> <物理卷路径1>……<物理卷路径N>

执行结果如下:

root@lvs06:~# vgcreate lvm_01 /dev/vdb /dev/vdc /dev/vdd /dev/vde /dev/vdf
 Volume group "lvm_01" successfully created

说明:

1.卷组名:该参数可自定义
2.物理卷路径:此处填写云盘的物理卷名称,多个物理卷直接以空格间隔
3.当提示 “Volume group XXX successfully created”标识卷组创建成功;

- step2:执行以下命令,可以向卷组(VG)中添加物理卷(PV)

vgextend 卷组名称 <物理卷路径1>……<物理卷路径N>

如下,向卷组(VG)lvm_01中添加一块新的物理卷:

root@lvs06:~# pvcreate /dev/vdg
 Physical volume "/dev/vdg" successfully created.
root@lvs06:~# vgextend lvm_01 /dev/vdg
 Volume group "lvm_01" successfully extended
  • step3:创建卷组(VG)成功后,可通过vgs,vgdisplay命令查看卷组信息
root@lvs06:~# vgs
 VG #PV #LV #SN Attr VSize VFree
 lvm_01 6 0 0 wz--n- <6.00t <6.00t

2.3步骤三 创建逻辑卷(LV)

  • step1:执行以下命令创建逻辑卷(LV)
lvcreate [-L <逻辑卷大小>][ -n <逻辑卷名称>] <卷组名称>

参数说明:

1.逻辑卷大小:逻辑卷的大小应小于卷组(VG)剩余可用空间,单位可以选择MB、GB或者TB
2.逻辑卷名称:可自定义
3.卷组名称:此处填写逻辑卷所在的卷组名称

本文以创建1个4TB的逻辑卷(LV)为例,执行结果如下:

root@lvs06:~# lvcreate -L 5T -n lv01 lvm_01
 Logical volume "lv01" created.
  • step2:执行lvdisplay命令查看,逻辑卷详细信息:
root@lvs06:~# lvdisplay
 --- Logical volume ---
 LV Path /dev/lvm_01/lv01
 LV Name lv01
 VG Name lvm_01
 LV UUID svB00x-l6Ke-ES6M-ctsE-9P6d-dVj2-o0h3Kz
 LV Write Access read/write
 LV Creation host, time lvs06, 2019-06-06 15:27:19 +0800
 LV Status available
 # open 0
 LV Size 5.00 TiB
 Current LE 1310720
 Segments 6
 Allocation inherit
 Read ahead sectors auto
 - currently set to 256
 Block device 253:0

2.4步骤四 创建并挂载文件系统

  • step1:执行以下命令,在创建好的逻辑卷(LV)上创建文件系统
mkfs.文件系统格式 逻辑卷路径

针对上一步中的逻辑卷创建ext4文件系统,执行结果如下:

root@lvs06:~# mkfs.ext4 /dev/lvm_01/lv01
mke2fs 1.44.1 (24-Mar-2018)
Creating filesystem with 1342177280 4k blocks and 167772160 inodes
Filesystem UUID: 2529002f-9209-4b6a-9501-106c1145c77f
Superblock backups stored on blocks:
 32768, 98304, 163840, 229376, 294912, 819200, 884736, 1605632, 2654208,
 4096000, 7962624, 11239424, 20480000, 23887872, 71663616, 78675968,
 102400000, 214990848, 512000000, 550731776, 644972544
Allocating group tables: done
Writing inode tables: done
Creating journal (262144 blocks): done
Writing superblocks and filesystem accounting information:
done
  • step2:执行以下命令挂载文件系统:
mount 逻辑卷路径 挂载点

执行结果如下:

root@lvs06:~# mount /dev/lvm_01/lv01 /media/lv01
root@lvs06:~# df -h
Filesystem Size Used Avail Use% Mounted on
udev 12G 0 12G 0% /dev
tmpfs 2.4G 3.7M 2.4G 1% /run
/dev/vda1 40G 3.6G 34G 10% /
tmpfs 12G 0 12G 0% /dev/shm
tmpfs 5.0M 0 5.0M 0% /run/lock
tmpfs 12G 0 12G 0% /sys/fs/cgroup
tmpfs 2.4G 0 2.4G 0% /run/user/0
/dev/mapper/lvm_01-lv01 5.0T 89M 4.8T 1% /media/lv01

三、进阶场景

3.1扩展逻辑卷以及系统容量

  • Step1:执行以下命令,可扩展逻辑卷的容量
lvextend [-L +/- <增减容量>] <逻辑卷路径>

参数说明:

1.增减容量:当卷组中可剩余容量时 ,可以执行扩容逻辑卷操作。扩容逻辑卷之后还需要扩容对应的文件系统才能生效;
2.逻辑卷路径:此处填写带扩容的逻辑卷路径

如下针对/dev/lvm_01/lv01 卷再扩容500GB物理空间,执行结果如下:

root@lvs06:~# lvextend -L +500GB /dev/lvm_01/lv01
Size of logical volume lvm_01/lv01 changed from 5.00 TiB (1310720 extents) to <5.49 TiB (1438720 extents).
Logical volume lvm_01/lv01 successfully resized.
  • step2:执行pvs命令,查看物理卷(pv)使用情况:
root@lvs06:~# pvs
 PV VG Fmt Attr PSize PFree
 /dev/vdb lvm_01 lvm2 a-- <1024.00g 0
 /dev/vdc lvm_01 lvm2 a-- <1024.00g 0
 /dev/vdd lvm_01 lvm2 a-- <1024.00g 0
 /dev/vde lvm_01 lvm2 a-- <1024.00g 0
 /dev/vdf lvm_01 lvm2 a-- <1024.00g 0
 /dev/vdg lvm_01 lvm2 a-- <1024.00g <523.98g
  • step3:执行以下resize2fs命令扩容文件系统:
resize2fs 逻辑卷路径

执行结果如下:

root@lvs06:~# resize2fs /dev/lvm_01/lv01
resize2fs 1.44.1 (24-Mar-2018)
Filesystem at /dev/lvm_01/lv01 is mounted on /media/lv01; on-line resizing required
old_desc_blocks = 640, new_desc_blocks = 703
The filesystem on /dev/lvm_01/lv01 is now 1473249280 (4k) blocks long.
  • step4:执行df-h名称,查看文件系统扩容情况
root@lvs06:~# df -h
Filesystem Size Used Avail Use% Mounted on
udev 12G 0 12G 0% /dev
tmpfs 2.4G 3.7M 2.4G 1% /run
/dev/vda1 40G 3.6G 34G 10% /
tmpfs 12G 0 12G 0% /dev/shm
tmpfs 5.0M 0 5.0M 0% /run/lock
tmpfs 12G 0 12G 0% /sys/fs/cgroup
tmpfs 2.4G 0 2.4G 0% /run/user/0
/dev/mapper/lvm_01-lv01 5.5T 83M 5.2T 1% /media/lv01

作者:小盆友开飞机

相关推荐

C#.NET Autofac 详解(c# autoit)

简介Autofac是一个成熟的、功能丰富的.NET依赖注入(DI)容器。相比于内置容器,它额外提供:模块化注册、装饰器(Decorator)、拦截器(Interceptor)、强o的属性/方法注...

webapi 全流程(webapi怎么部署)

C#中的WebAPIMinimalApi没有控制器,普通api有控制器,MinimalApi是直达型,精简了很多中间代码,广泛适用于微服务架构MinimalApi一切都在组控制台应用程序类【Progr...

.NET外挂系列:3. 了解 harmony 中灵活的纯手工注入方式

一:背景1.讲故事上一篇我们讲到了注解特性,harmony在内部提供了20个HarmonyPatch重载方法尽可能的让大家满足业务开发,那时候我也说了,特性虽然简单粗暴,但只能解决95%...

C# 使用SemanticKernel调用本地大模型deepseek

一、先使用ollama部署好deepseek大模型。具体部署请看前面的头条使用ollama进行本地化部署deepseek大模型二、创建一个空的控制台dotnetnewconsole//添加依赖...

C#.NET 中间件详解(.net core中间件use和run)

简介中间件(Middleware)是ASP.NETCore的核心组件,用于处理HTTP请求和响应的管道机制。它是基于管道模型的轻量级、模块化设计,允许开发者在请求处理过程中插入自定义逻辑。...

IoC 自动注入:让依赖注册不再重复劳动

在ASP.NETCore中,IoC(控制反转)功能通过依赖注入(DI)实现。ASP.NETCore有一个内置的依赖注入容器,可以自动完成依赖注入。我们可以结合反射、特性或程序集扫描来实现自动...

C#.NET 依赖注入详解(c#依赖注入的三种方式)

简介在C#.NET中,依赖注入(DependencyInjection,简称DI)是一种设计模式,用于实现控制反转(InversionofControl,IoC),以降低代码耦合、提高可...

C#从零开始实现一个特性的自动注入功能

在现代软件开发中,依赖注入(DependencyInjection,DI)是实现松耦合、模块化和可测试代码的一个重要实践。C#提供了优秀的DI容器,如ASP.NETCore中自带的Micr...

C#.NET 仓储模式详解(c#仓库货物管理系统)

简介仓储模式(RepositoryPattern)是一种数据访问抽象模式,它在领域模型和数据访问层之间创建了一个隔离层,使得领域模型无需直接与数据访问逻辑交互。仓储模式的核心思想是将数据访问逻辑封装...

C#.NET 泛型详解(c# 泛型 滥用)

简介泛型(Generics)是指在类型或方法定义时使用类型参数,以实现类型安全、可重用和高性能的数据结构与算法为什么需要泛型类型安全防止“装箱/拆箱”带来的性能损耗,并在编译时检测类型错误。可重用同一...

数据分析-相关性分析(相关性 分析)

相关性分析是一种统计方法,用于衡量两个或多个变量之间的关系强度和方向。它通过计算相关系数来量化变量间的线性关系,从而帮助理解变量之间的相互影响。相关性分析常用于数据探索和假设检验,是数据分析和统计建模...

geom_smooth()函数-R语言ggplot2快速入门18

在每节,先运行以下这几行程序。library(ggplot2)library(ggpubr)library(ggtext)#用于个性化图表library(dplyr)#用于数据处理p...

规范申报易错要素解析(规范申报易错要素解析)

为什么要规范申报?规范申报是以满足海关监管、征税、统计等工作为目的,纳税义务人及其代理人依法向海关如实申报的行为,也是海关审接单环节依法监管的重要工作。企业申报的内容须符合《中华人民共和国海关进出口货...

「Eurora」海关编码归类 全球海关编码查询 关务服务

  海关编码是什么?  海关编码即HS编码,为编码协调制度的简称。  其全称为《商品名称及编码协调制度的国际公约》(InternationalConventionforHarmonizedCo...

9月1日起,河南省税务部门对豆制品加工业试行新政7类豆制品均适用投入产出法

全媒体记者杨晓川报道9月2日,记者从税务部门获悉,为减轻纳税人税收负担,完善农产品增值税进项税额抵扣机制,根据相关规定,结合我省实际情况,经广泛调查研究和征求意见,从9月1日起,我省税务部门对豆制品...