百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

T2T-ViT:更多的局部结构信息,更高效的主干网络 | ICCV 2021

bigegpt 2024-10-12 06:37 4 浏览

论文提出了T2T-ViT模型,引入tokens-to-token(T2T)模块有效地融合图像的结构信息,同时借鉴CNN结果设计了deep-narrow的ViT主干网络,增强特征的丰富性。在ImageNet上从零训练时,T2T-ViT取得了优于ResNets的性能MobileNets性能相当

来源:晓飞的算法工程笔记 公众号

论文: Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

  • 论文地址:https://arxiv.org/abs/2101.11986
  • 论文代码:https://github.com/yitu-opensource/T2T-ViT

Introduction


? 尽管ViT证明了纯Transformer架构对于视觉任务很有前景,但在中型数据集(例如ImageNet)上从零训练时,其性能仍然不如大小类似的CNN网络(例如 ResNets)。

? 论文认为这种性能差距源于ViT的两个主要限制:

  • 简单地对输入图像分割成14x14或16x16的token序列使得ViT无法对图像的局部结构(如边缘和线条)建模,需要更多的训练样本(如JFT-300M用于预训练)才能与CNN有相似的性能。
  • ViT的主干网络没有像CNN那样为视觉任务进行精心设计,包含了大量的冗余结构,特征丰富程度有限,模型训练困难。

? 为了验证,论文对ViTL/16和ResNet50学习到的特征进行可视化对比。如图2所示,ResNet逐层捕获所需的局部结构信息(边缘、线条、纹理等),而ViT特征的结构信息建模不佳,所有注意力块都捕获全局关系(例如,整只狗)。这表明,ViT将图像拆分为具有固定长度的token时忽略了局部结构。此外,论文发现ViT中的许多通道的值为零,这意味着ViT的主干网络不如ResNets高效。如果训练样本不足,则只能提供特征的丰富度有限。

? 基于上面的观察,论文设计了一个新的Vision Transformer模型来克服上述限制:

  • 提出了一种渐进式的token生成模块Tokens-to-Token,通过transformer层提取特征并将相邻的token聚合为一个token,代替ViT中将图像简单分割为token的行为。该模块能够迭代地对周围toekn的局部结构信息进行建模并减少token序列长度。
  • 为了设计高效的Vision Transformer主干网络,提高特征丰富度,论文从CNN中借用一些结构设计ViT主干网络。论文发现,通道数较少、层数较多的“deep-narrow”架构设计能够显著减少ViT模型的大小和MAC(Multi-Adds),而性能几乎没有下降。这表明CNN的架构优化可以借鉴到Vision Transformer主干的设计。

? 基于T2T模块和deep-narrow主干架构,论文设计了Tokens-to-Token Vision Transformer (T2T-ViT)。对比原生的ViT,在ImageNet上从零开始训练的性能有显着的提高,与CNN网络相当甚至更好。

? 总体言之,论文的贡献有三方面:

  • 通过精心设计的Transformer架构(T2T模块和高效主干网络)证明,Vision Transformer可以无需JFT-300M上的预训练,在ImageNet上以不同的复杂度胜过CNN。
  • 为ViT开发了一种新颖的渐进式token生成策略T2T模块,更好地融合图像结构信息,优于ViT的简单token生成方法。
  • 验证CNN的架构优化可以用于ViT的主干网络设计,提高特征丰富度并减少冗余。通过大量实验,deep-narrow的架构设计最适合ViT。

Tokens-to-Token ViT


? 为了克服ViT的简单token生成和低效主干网络的局限性,论文提出了Tokens-to-Token Vision Transformer(T2T-ViT),可以逐步将图像转换为token并且主干网络更高效。因此,T2T-ViT由两个主要组件组成:

  • 一个多层的Tokens-to-Token(T2T)模块,用于对图像的局部结构信息进行建模并逐渐减少token数量。
  • 一个高效的T2T-ViT主干网络,用于对T2T模块生成的token提取全局注意力关系。在探索了几种基于CNN的架构设计后,论文采用了一种deep-narrow结构来减少冗余并提高特征丰富度。

Tokens-to-Token: Progressive Tokenization

? Token-to-Token(T2T)模块主要为了克服ViT中简单token生成的限制,逐步将图像结构化为token以及对局部结构信息进行建模,并且可以迭代地减少token数量。每个T2T操作都包含两个步骤:Re-structurization和Soft Split(SS)。

  • Re-structurization

? 如图 3 所示,给定token序列,先通过自注意模块(T2T Transformer)进行变换:

? 其中MSA为具有层归一化的多头自注意操作,MLP是标准Transformer中具有层归一化的多层感知器。MSA输出的将被重塑为空间维度上的图像:

? Reshape表示将重新组织为,其中是的长度,h、w、c 分别是高度、宽度和通道数,并且。

  • Soft Split

? 如图3所示,在获得重构图像后,使用Soft Split来建模局部结构信息并减少token的长度。为了避免信息丢失,将图像拆分为重叠的分割区域,每个区域都与周围的区域相关。这样就建立了一个先验,即相邻分割区域生成的token之间应该有更强的相关性。随后将每个分割区域中的token拼接为一个token,从周围的像素或token中聚合局部信息。

? 进行Soft Split时,每个分割区域的大小为,区域重叠为,图像边界填充为,其中类似于卷积操作中的步长。对于重建图像,Soft Split后输出的token 的长度为:

? 每个分割区域的大小为,将所有分割区域展平后得到token序列。在Soft Split之后,输出token可进行下一轮T2T操作。

  • T2T module

? 通过反复进行Re-structurization和Soft Split,T2T模块可以逐步减少token的长度以及变换图像的空间结构。T2T模块的迭代过程可以表述为:

? 对于输入图像,先应用Soft Split将其拆分为token序列。在最后一次迭代之后,T2T模块的输出固定长度的token序列。因此,T2T-ViT 的主干网络可以在上建模全局关系。

? 此外,由于T2T模块中的token长度大于ViT中的一般设置(16 × 16),MAC和内存使用量都很大。为了解决这个问题,将T2T层的通道维度设置为较小的值(32或64)来减少 MAC,也可以采用高效的Transformer层变种,例如 Performer层,从而在有限的GPU内存下减少内存使用。

T2T-ViT Backbone

? 由于ViT主干网络中许多通道是无效的,论文打算为T2T-ViT重新设计一个高效的主干网络,减少冗余并提高特征丰富度。论文借鉴了CNN的一些设计,探索不同的ViT架构设计。由于每个Transformer层都具有ResNets的短路连接,可以参考DenseNet增加特征复用和特征丰富程度,或者参考Wide-ResNets和ResNeXt调整通道维度和head数。

? 论文在ViT上探索了以下五种CNN的架构设计:

  • Dense connection as DenseNet。
  • Deep-narrow vs. shallow-wide structure as in Wide-ResNets。
  • Channel attention as Squeeze-an-Excitation(SE) Networks。
  • More split heads in multi-head attention layer as ResNeXt。
  • Ghost operations as GhostNet。

? 论文对以上结构移植进行了实验,有以下两点发现:

  • 采用deep-narrow结构,减小通道尺寸可以减少通道冗余,增加层深度可以提高特征丰富度。不仅模型大小和MAC都减小了,性能还得到了提高。
  • SE模块的通道注意力也能提升ViT,但不如deep-narrow结构有效。

? 基于这些发现,论文为T2T-ViT主干网络设计了一个 deep-narrow的架构,具有较小的通道数和隐藏维度,但层数更多。对于T2T模块输出的固定长度的token序列,为其添加一个class token,然后加入Sinusoidal Position Embedding(PE),最后与ViT一样进行分类:

? 其中,是Sinusoidal Position Embedding,LN是层归一化,fc是用于分类的全连接层,是输出预测。

T2T-ViT Architecture

? T2T-ViT包含两部分:Tokens-to-Token(T2T)模块和T2T-ViT主干网络。T2T模块有多种设计选择,论文设置,T2T模块中有次Soft Split和次Re-structurization。三次Soft Split的分区区域设置为,重叠区域设置为,可以将的输入图片压缩为的token序列。

? T2T-ViT主干网络从T2T模块中取固定长度token序列作为输入,基于deep-narrow架构设计,中间特征维度(256-512)和MLP大小(512-1536)比ViT小很多。例如,T2T-ViT-14的主干网络中有14个Transofmer层,中间特征维度为384,而ViT-B/16有12个Transformer层,中间特征维度为768,参数量和MACs是T2T-ViT-14的3倍。

? 为了方便与ResNet进行比较,论文设计了三个的T2T-ViT模型:T2T-ViT-14、T2T-ViT-19 和 T2T-ViT-24,参数量分别与ResNet50、ResNet101和ResNet152相当。而为了与MobileNets等小型模型进行比较,论文设计了两个lite模型:T2T-ViT-7、T2TViT-12,其模型大小与MibileNetV1和MibileNetV2相当。两个lite TiT-ViT没有使用特殊设计或技巧,只是简单地降低了层深度、中间特征维度以及MLP比例。

Experiment


? 与ViT的从零训练对比。

? 与ResNet对比。

? 与MobileNet对比。

? 对预训练模型进行迁移至CIFAR进行finetune对比。

? 对比不同类型的网络以及对T2T-ViT的修改。

? 模块对比实验,c是用3个卷积代替T2T模块。

Conclusion


? 论文提出了T2T-ViT模型,引入tokens-to-token(T2T)模块有效地融合图像的结构信息,同时借鉴CNN结果设计了deep-narrow的ViT主干网络,增强特征的丰富性。在ImageNet上从零训练时,T2T-ViT取得了优于ResNets的性能MobileNets性能相当。

如果本文对你有帮助,麻烦点个赞或在看呗~
更多内容请关注 微信公众号【晓飞的算法工程笔记】

work-life balance.

相关推荐

恢复软件6款汇总推荐,帮你减轻数据恢复压力!

在当今数字化生活中,数据丢失的风险如影随形。无论是误删文件、硬盘故障,还是遭遇病毒攻击,丢失的数据都可能给我们带来不小的麻烦。此时,一款优秀的数据恢复软件就成为了挽救数据的关键。今天,为大家汇总推荐...

中兴星星一号刷回官方原版recovery的教程

【搞科技教程】中兴星星一号的官方recovery也来说一下了,因为之前给大家分享过了第三方的recovery了,之前给大家分享的第三方recovery也是采用一键刷入的方式,如果细心的朋友会发现,之前...

新玩机工具箱,Uotan柚坛工具箱软件体验

以前的手机系统功能比较单调,各厂商的重视程度不一样,所以喜欢玩机的朋友会解锁手机系统的读写权限,来进行刷机或者ROOT之类的操作,让使用体验更好。随着现在的手机系统越来越保守,以及自身功能的增强,...

三星g906k刷recovery教程_三星g906k中文recovery下载

【搞科技教程】看到有一些机友在找三星g906k的第三方recovery,下面就来说一下详细的recovery的刷入方法了,因为手机只有有了第三方的recovery之后才可以刷第三方的root包和系统包...

中兴星星2号刷recovery教程_星星二号中文recovery下载

【搞科技教程】咱们的中兴星星2手机也就是中兴星星二号手机的第三方recovery已经出来了,并且是中文版的,有了这个recovery之后,咱们的手机就可以轻松的刷第三方的系统包了,如果没有第三方的re...

数据恢复软件有哪些值得推荐?这 6 款亲测好用的工具汇总请收好!

在数字生活中,数据丢失的阴霾常常突如其来。无论是误删工作文档、格式化重要磁盘,还是遭遇系统崩溃,都可能让我们陷入焦虑。关键时刻,一款得力的数据恢复软件便是那根“救命稻草”。今天,为大家精心汇总6...

中兴u956刷入recovery的教程(中兴e5900刷机)

【搞科技教程】这次主要来给大家说说中兴u956手机如何刷入第三方的recovery,因为第三方的recovery工具是咱们刷第三方rom包的基础,可是很我欠却不会刷,所以太这里来给大家整理了一下详细的...

联想A850+刷recovery教程 联想A850+第三方recovery下载

【搞科技教程】联想A850+的第三方recovery出来了,这个第三方的recovery是非常的重要的,比如咱们的手机要刷第三方的系统包的时候,都是需要用到这个第三方的recovery的,在网上也是有...

工具侠重大更新 智能机上刷机一条龙完成

工具侠是针对玩机的机油开发的一款工具,不管是发烧级别的粉丝,还是普通小白用户,都可以在工具侠上找到你喜欢的工具应用。这不,最新的工具侠2.0.16版本,更新了专门为小白准备的刷机助手工具,以及MTK超...

shift+delete删除的文件找回6种硬盘数据恢复工具

硬盘作为电脑的重要存储设备,如同一个巨大的数字仓库,承载着我们日常工作、学习和生活中的各种文件,从珍贵的照片、重要的工作文档到喜爱的视频、音乐等,都依赖硬盘来安全存放。但有时,我们可能会不小心用sh...

使用vscode+Deepseek 实现AI编程 基于Cline和continue

尊敬的诸位!我是一名专注于嵌入式开发的物联网工程师。关注我,持续分享最新物联网与AI资讯和开发实战。期望与您携手探寻物联网与AI的无尽可能。这两天deepseek3.0上线,据说编程能力比肩Cl...

详解如何使用VSCode搭建TypeScript环境(适合小白)

搭建Javascript环境因为TypeScript不能直接在浏览器上运行。它需要编译器来编译并生成JavaScript文件。所以需要首先安装好javascript环境,可以参考文章:https://...

使用VSCode来书写你的Jupyter Notebooks

现在你可以在VScode里面来书写你的notebook了,使用起来十分的方便。下面来给大家演示一下环境的搭建。首先需要安装一个jupyter的包,使用下面的命令安装:pip3install-ih...

使用VSCode模板提高Vue开发效率(vscode开发vue插件)

安装VSCode安装Vetur和VueHelper插件,安装完成后需要重启VScode。在扩展插件搜索框中找到如下Vetur和VueHelper两个插件,注意看图标。添加Vue模板打...

干货!VsCode接入DeepSeek实现AI编程的5种主流插件详解

AI大模型对编程的影响非常之大,可以说首当其冲,Cursor等对话式编程工具渐渐渗透到开发者的工作中,作为AI编程的明星产品,Cursor虽然好用,但是贵啊,所以咱们得找平替,最好免费那种。俗话说,不...