Python(TensorFlow框架)实现手写数字识别系统
bigegpt 2024-10-26 08:14 4 浏览
手写数字识别算法的设计与实现
本文使用python基于TensorFlow设计手写数字识别算法,并编程实现GUI界面,构建手写数字识别系统。这是本人的本科毕业论文课题,当然,这个也是机器学习的基本问题。本博文不会以论文的形式展现,而是以编程实战完成机器学习项目的角度去描述。
项目要求:本文主要解决的问题是手写数字识别,最终要完成一个识别系统。
设计识别率高的算法,实现快速识别的系统。
1 LeNet-5模型的介绍
本文实现手写数字识别,使用的是卷积神经网络,建模思想来自LeNet-5,如下图所示:
这是原始的应用于手写数字识别的网络,我认为这也是最简单的深度网络。
LeNet-5不包括输入,一共7层,较低层由卷积层和最大池化层交替构成,更高层则是全连接和高斯连接。
LeNet-5的输入与BP神经网路的不一样。这里假设图像是黑白的,那么LeNet-5的输入是一个32*32的二维矩阵。同时,输入与下一层并不是全连接的,而是进行稀疏连接。本层每个神经元的输入来自于前一层神经元的局部区域(5×5),卷积核对原始图像卷积的结果加上相应的阈值,得出的结果再经过激活函数处理,输出即形成卷积层(C层)。卷积层中的每个特征映射都各自共享权重和阈值,这样能大大减少训练开销。降采样层(S层)为减少数据量同时保存有用信息,进行亚抽样。
第一个卷积层(C1层)由6个特征映射构成,每个特征映射是一个28×28的神经元阵列,其中每个神经元负责从5×5的区域通过卷积滤波器提取局部特征。一般情况下,滤波器数量越多,就会得出越多的特征映射,反映越多的原始图像的特征。本层训练参数共6×(5×5+1)=156个,每个像素点都是由上层5×5=25个像素点和1个阈值连接计算所得,共28×28×156=122304个连接。
S2层是对应上述6个特征映射的降采样层(pooling层)。pooling层的实现方法有两种,分别是max-pooling和mean-pooling,LeNet-5采用的是mean-pooling,即取n×n区域内像素的均值。C1通过2×2的窗口区域像素求均值再加上本层的阈值,然后经过激活函数的处理,得到S2层。pooling的实现,在保存图片信息的基础上,减少了权重参数,降低了计算成本,还能控制过拟合。本层学习参数共有1*6+6=12个,S2中的每个像素都与C1层中的2×2个像素和1个阈值相连,共6×(2×2+1)×14×14=5880个连接。
S2层和C3层的连接比较复杂。C3卷积层是由16个大小为10×10的特征映射组成的,当中的每个特征映射与S2层的若干个特征映射的局部感受野(大小为5×5)相连。其中,前6个特征映射与S2层连续3个特征映射相连,后面接着的6个映射与S2层的连续的4个特征映射相连,然后的3个特征映射与S2层不连续的4个特征映射相连,最后一个映射与S2层的所有特征映射相连。此处卷积核大小为5×5,所以学习参数共有6×(3×5×5+1)+9×(4×5×5+1)+1×(6×5×5+1)=1516个参数。而图像大小为28×28,因此共有151600个连接。
S4层是对C3层进行的降采样,与S2同理,学习参数有16×1+16=32个,同时共有16×(2×2+1)×5×5=2000个连接。
C5层是由120个大小为1×1的特征映射组成的卷积层,而且S4层与C5层是全连接的,因此学习参数总个数为120×(16×25+1)=48120个。
F6是与C5全连接的84个神经元,所以共有84×(120+1)=10164个学习参数。
卷积神经网络通过通过稀疏连接和共享权重和阈值,大大减少了计算的开销,同时,pooling的实现,一定程度上减少了过拟合问题的出现,非常适合用于图像的处理和识别。
2 手写数字识别算法模型的构建
2.1 各层设计
有了第一节的基础知识,在这基础上,进行完善和改进。
输入层设计
输入为28×28的矩阵,而不是向量。
激活函数的选取
Sigmoid函数具有光滑性、鲁棒性和其导数可用自身表示的优点,但其运算涉及指数运算,反向传播求误差梯度时,求导又涉及乘除运算,计算量相对较大。同时,针对本文构建的含有两层卷积层和降采样层,由于sgmoid函数自身的特性,在反向传播时,很容易出现梯度消失的情况,从而难以完成网络的训练。因此,本文设计的网络使用ReLU函数作为激活函数。
ReLU的表达式:
卷积层设计
本文设计卷积神经网络采取的是离散卷积,卷积步长为1,即水平和垂直方向每次运算完,移动一个像素。卷积核大小为5×5。
降采样层
本文降采样层的pooling方式是max-pooling,大小为2×2。
输出层设计
输出层设置为10个神经网络节点。数字0~9的目标向量如下表所示:
2.2 网络模型的总体结构
其实,本文网络的构建,参考自TensorFlow的手写数字识别的官方教程的,读者有兴趣也可以详细阅读。
2.3 编程实现算法
本文使用Python,调用TensorFlow的api完成手写数字识别的算法。
注:本文程序运行环境是:Win10,python3.5.2。当然,也可以在Linux下运行,由于TensorFlow对py2和py3兼容得比较好,在Linux下可以在python2.7中运行。
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Fri Feb 17 19:50:49 2017
@author: Yonghao Huang
"""
#import modules
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf
import time
from datetime import timedelta
import math
from tensorflow.examples.tutorials.mnist import input_data
def new_weights(shape):
return tf.Variable(tf.truncated_normal(shape,stddev=0.05))
def new_biases(length):
return tf.Variable(tf.constant(0.1,shape=length))
def conv2d(x,W):
return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')
def max_pool_2x2(inputx):
return tf.nn.max_pool(inputx,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
#import data
data = input_data.read_data_sets("./data", one_hot=True) # one_hot means [0 0 1 0 0 0 0 0 0 0] stands for 2
print("Size of:")
print("--Training-set:\t\t{}".format(len(data.train.labels)))
print("--Testing-set:\t\t{}".format(len(data.test.labels)))
print("--Validation-set:\t\t{}".format(len(data.validation.labels)))
data.test.cls = np.argmax(data.test.labels,axis=1) # show the real test labels: [7 2 1 ..., 4 5 6], 10000values
x = tf.placeholder("float",shape=[None,784],name='x')
x_image = tf.reshape(x,[-1,28,28,1])
y_true = tf.placeholder("float",shape=[None,10],name='y_true')
y_true_cls = tf.argmax(y_true,dimension=1)
# Conv 1
layer_conv1 = {"weights":new_weights([5,5,1,32]),
"biases":new_biases([32])}
h_conv1 = tf.nn.relu(conv2d(x_image,layer_conv1["weights"])+layer_conv1["biases"])
h_pool1 = max_pool_2x2(h_conv1)
# Conv 2
layer_conv2 = {"weights":new_weights([5,5,32,64]),
"biases":new_biases([64])}
h_conv2 = tf.nn.relu(conv2d(h_pool1,layer_conv2["weights"])+layer_conv2["biases"])
h_pool2 = max_pool_2x2(h_conv2)
# Full-connected layer 1
fc1_layer = {"weights":new_weights([7*7*64,1024]),
"biases":new_biases([1024])}
h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,fc1_layer["weights"])+fc1_layer["biases"])
# Droupout Layer
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)
# Full-connected layer 2
fc2_layer = {"weights":new_weights([1024,10]),
"biases":new_weights([10])}
# Predicted class
y_pred = tf.nn.softmax(tf.matmul(h_fc1_drop,fc2_layer["weights"])+fc2_layer["biases"]) # The output is like [0 0 1 0 0 0 0 0 0 0]
y_pred_cls = tf.argmax(y_pred,dimension=1) # Show the real predict number like '2'
# cost function to be optimized
cross_entropy = -tf.reduce_mean(y_true*tf.log(y_pred))
optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cross_entropy)
# Performance Measures
correct_prediction = tf.equal(y_pred_cls,y_true_cls)
accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
train_batch_size = 50
def optimize(num_iterations):
total_iterations=0
start_time = time.time()
for i in range(total_iterations,total_iterations+num_iterations):
x_batch,y_true_batch = data.train.next_batch(train_batch_size)
feed_dict_train_op = {x:x_batch,y_true:y_true_batch,keep_prob:0.5}
feed_dict_train = {x:x_batch,y_true:y_true_batch,keep_prob:1.0}
sess.run(optimizer,feed_dict=feed_dict_train_op)
# Print status every 100 iterations.
if i%100==0:
# Calculate the accuracy on the training-set.
acc = sess.run(accuracy,feed_dict=feed_dict_train)
# Message for printing.
msg = "Optimization Iteration:{0:>6}, Training Accuracy: {1:>6.1%}"
# Print it.
print(msg.format(i+1,acc))
# Update the total number of iterations performed
total_iterations += num_iterations
# Ending time
end_time = time.time()
# Difference between start and end_times.
time_dif = end_time-start_time
# Print the time-usage
print("Time usage:"+str(timedelta(seconds=int(round(time_dif)))))
test_batch_size = 256
def print_test_accuracy():
# Number of images in the test-set.
num_test = len(data.test.images)
cls_pred = np.zeros(shape=num_test,dtype=np.int)
i = 0
while i < num_test:
# The ending index for the next batch is denoted j.
j = min(i+test_batch_size,num_test)
# Get the images from the test-set between index i and j
images = data.test.images[i:j, :]
# Get the associated labels
labels = data.test.labels[i:j, :]
# Create a feed-dict with these images and labels.
feed_dict={x:images,y_true:labels,keep_prob:1.0}
# Calculate the predicted class using Tensorflow.
cls_pred[i:j] = sess.run(y_pred_cls,feed_dict=feed_dict)
# Set the start-index for the next batch to the
# end-index of the current batch
i = j
cls_true = data.test.cls
correct = (cls_true==cls_pred)
correct_sum = correct.sum()
acc = float(correct_sum) / num_test
# Print the accuracy
msg = "Accuracy on Test-Set: {0:.1%} ({1}/{2})"
print(msg.format(acc,correct_sum,num_test))
# Performance after 10000 optimization iterations
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
运行结果显示:测试集中准确率大概为99.2%。
我还写了一些辅助函数,可以查看部分识别错误的图片,
还可以查看混淆矩阵,
2.3 实现手写识别系统
最后,将训练好的参数保存,封装进一个GUI界面中,形成一个手写识别系统。
系统中还添加了一点图像预处理的操作,比如灰度化,图像信息的归一化等,更贴近实际应用。
系统可进行快速识别,如下图
3 总结
本文实现的系统其实是基于卷积神经网络的手写数字识别系统。该系统能快速实现手写数字识别,成功识别率高。缺点:只能正确识别单个数字,图像预处理还不够,没有进行图像分割,读者也可以自行添加,进行完善。
4 收获
本人之前的本科期间,虽然努力学习高数、线性代数和概率论,但是没有认真学习过机器学习,本人是2017年才开始系统学习机器学习相关知识,而且本科毕业论文也选择了相关的课题,虽然比较基础,但是认真完成后,有一种学以致用的满足感,同时也激励着我进行更深入的理论学习和实践探讨,与所有读者共勉。
==================================
2018年5月13日更新
源码分享链接:https://pan.baidu.com/s/1BNlifR3DvIvTO5qkOTTpsQ
========================================
2018年6月6日更新更新!!
python(TensorFlow)实现手写字符识别
此处的“手写字符”,其实指的是notMNIST数据库中的手写字符,其实和MNIST数据库是一样的。这里实现手写字符识别,主要是展示TensorFlow框架的可拓展性很强,具体来说,就是可以通过改动少部分的代码,从而实现一个新的识别功能。
NotMnist数据库
这个数据库和MNIST数据库基本一样,只是把10个数字换成了10个字母,即:A,B,C,D,E,F,G,H,I,J,K
当然,这个数据库的识别难度大一些,因为数据噪声更多一些,详情读者可以搜一搜了解一下。
实战
将NotMNIST数据库下载以后,放在本博文上述的网络中,基本不需要修改代码,直接训练,即可得到一个能识别字符的网络模型。
最后在测试集中的准确率,比MNIST的会低一些,大概为96%左右。
本文也将训练好的网络模型封装在和上述系统相似的GUI系统中,
识别效果还可以!
同样,将卷积卷积层可视化。
结语
TensorFlow框架可拓展性很强,只要设计好了网络,就能很容易的实现出来;同时,使用基本的CNN识别整体架构也是大同小异的,很多识别任务是通用的。当然,在具体的实践中需要得到接近完美的效果,还是要下很大功夫的!努力学习吧,加油!
(如果你/您有什么有趣的想法,可以在下面留言,如果我也感兴趣同时又有时间的话,我会尝试做一做,^_^)
相关推荐
- Docker篇(二):Docker实战,命令解析
-
大家好,我是杰哥上周我们通过几个问题,让大家对于Docker有了一个全局的认识。然而,说跟练往往是两个概念。从学习的角度来说,理论知识的学习,往往只是第一步,只有经过实战,才能真正掌握一门技术所以,本...
- docker学习笔记——安装和基本操作
-
今天学习了docker的基本知识,记录一下docker的安装步骤和基本命令(以CentOS7.x为例)一、安装docker的步骤:1.yuminstall-yyum-utils2.yum-con...
- 不可错过的Docker完整笔记(dockerhib)
-
简介一、Docker简介Docker是一个开源的应用容器引擎,基于Go语言并遵从Apache2.0协议开源。Docker可以让开发者打包他们的应用以及依赖包到一个轻量级、可移植的容器中,...
- 扔掉运营商的 IPTV 机顶盒,全屋全设备畅看 IPTV!
-
其实现在看电视节目的需求确实大大降低了,折腾也只是为了单纯的让它实现,享受这个过程带来的快乐而已,哈哈!预期构想家里所有设备直接接入网络随时接收并播放IPTV直播(电信点播的节目不是太多,但好在非常稳...
- 第五节 Docker 入门实践:从 Hello World 到容器操作
-
一、Docker容器基础运行(一)单次命令执行通过dockerrun命令可以直接在容器中执行指定命令,这是体验Docker最快捷的方式:#在ubuntu:15.10容器中执行ech...
- 替代Docker build的Buildah简单介绍
-
Buildah是用于通过较低级别的coreutils接口构建OCI兼容镜像的工具。与Podman相似,Buildah不依赖于Docker或CRI-O之类的守护程序,并且不需要root特权。Builda...
- Docker 命令大全(docker命令大全记录表)
-
容器生命周期管理run-创建并启动一个新的容器。start/stop/restart-这些命令主要用于启动、停止和重启容器。kill-立即终止一个或多个正在运行的容器rm-于删除一个或...
- docker常用指令及安装rabbitMQ(docker安装rabbitmq配置环境)
-
一、docker常用指令启动docker:systemctlstartdocker停止docker:systemctlstopdocker重启docker:systemctlrestart...
- 使用Docker快速部署Storm环境(docker部署confluence)
-
Storm的部署虽然不是特别麻烦,但是在生产环境中,为了提高部署效率,方便管理维护,使用Docker来统一管理部署是一个不错的选择。下面是我开源的一个新的项目,一个配置好了storm与mono环境的D...
- Docker Desktop安装使用指南:零基础教程
-
在之前的文章中,我多次提到使用Docker来安装各类软件,尤其是开源软件应用。鉴于不少读者对此有需求,我决定专门制作一期关于Docker安装与使用的详细教程。我主要以Macbook(Mac平台)为例进...
- Linux如何成功地离线安装docker(linux离线安装httpd)
-
系统环境:Redhat7.2和Centos7.4实测成功近期因项目需要用docker,所以记录一些相关知识,由于生产环境是不能直接连接互联网,尝试在linux中离线安装docker。步骤1.下载...
- Docker 类面试题(常见问题)(docker面试题目)
-
Docker常见问题汇总镜像相关1、如何批量清理临时镜像文件?可以使用sudodockerrmi$(sudodockerimages-q-fdanging=true)命令2、如何查看...
- 面试官:你知道Dubbo怎么优雅上下线的吗?你:优雅上下线是啥?
-
最近无论是校招还是社招,都进行的如火如荼,我也承担了很多的面试工作,在一次面试过程中,和候选人聊了一些关于Dubbo的知识。Dubbo是一个比较著名的RPC框架,很多人对于他的一些网络通信、通信协议、...
- 【Docker 新手入门指南】第五章:Hello Word
-
适合人群:完全零基础新手|学习目标:30分钟掌握Docker核心操作一、准备工作:先确认是否安装成功打开终端(Windows用户用PowerShell或GitBash),输入:docker--...
- 松勤软件测试:详解Docker,如何用portainer管理Docker容器
-
镜像管理搜索镜像dockersearch镜像名称拉取镜像dockerpullname[:tag]列出镜像dockerimages删除镜像dockerrmiimage名称或id删除...
- 一周热门
- 最近发表
-
- Docker篇(二):Docker实战,命令解析
- docker学习笔记——安装和基本操作
- 不可错过的Docker完整笔记(dockerhib)
- 扔掉运营商的 IPTV 机顶盒,全屋全设备畅看 IPTV!
- 第五节 Docker 入门实践:从 Hello World 到容器操作
- 替代Docker build的Buildah简单介绍
- Docker 命令大全(docker命令大全记录表)
- docker常用指令及安装rabbitMQ(docker安装rabbitmq配置环境)
- 使用Docker快速部署Storm环境(docker部署confluence)
- Docker Desktop安装使用指南:零基础教程
- 标签列表
-
- mybatiscollection (79)
- mqtt服务器 (88)
- keyerror (78)
- c#map (65)
- resize函数 (64)
- xftp6 (83)
- bt搜索 (75)
- c#var (76)
- mybatis大于等于 (64)
- xcode-select (66)
- mysql授权 (74)
- 下载测试 (70)
- linuxlink (65)
- pythonwget (67)
- androidinclude (65)
- logstashinput (65)
- hadoop端口 (65)
- vue阻止冒泡 (67)
- oracle时间戳转换日期 (64)
- jquery跨域 (68)
- php写入文件 (73)
- kafkatools (66)
- mysql导出数据库 (66)
- jquery鼠标移入移出 (71)
- 取小数点后两位的函数 (73)