百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

Python:机器学习造轮子之线性回归

bigegpt 2024-10-26 08:16 4 浏览

最近看了线性回归,复习了一下微积分和线性代数,想着学以致用,能不能自己动手实现一把呢。于是就动手了。

线性回归是比较基础的算法,是后面逻辑回归的基础。主要是通过一条直线来拟合样本。通常来说只有教学意义。

来说说约定的符号,线性回归参数主要由斜率和截距组成,这里用W表示斜率,b表示截距。大写的W表示这是一个向量。一般来说是n_feauter_num数量,就是有多少个特征,W的shape就是(n_feauter_num,1),截距b是一个常数,通过公式Y=W*X+b计算出目标Y值,一般来说,在机器学习中约定原始值为Y,预测值为Y_hat。下面来谈谈具体实现步骤

  • 构造数据
  • 构造loss function(coss function)
  • 分别对W和b计算梯度(也是对cost function分别对W和b求导)
  • 计算Y_hat
  • 多次迭代计算梯度,直接收敛或者迭代结束

下面给出具体python代码实现,本代码是通用代码,可以任意扩展W,代码中计算loss和梯度的地方采用的向量实现,因此增加W的维度不用修改代码

import matplotlib.pyplot as pltimport numpy as npdef f(X):
 w = np.array([1, 3, 2])
 b = 10
 return np.dot(X, w.T) + bdef cost(X, Y, w, b):
 m = X.shape[0]
 Z = np.dot(X, w) + b
 Y_hat = Z.reshape(m, 1)
 cost = np.sum(np.square(Y_hat - Y)) / (2 * m) return costdef gradient_descent(X, Y, W, b, learning_rate):
 m = X.shape[0]
 W = W - learning_rate * (1 / m) * X.T.dot((np.dot(X, W) + b - Y))
 b = b - learning_rate * (1 / m) * np.sum(np.dot(X, W) + b - Y) return W, bdef main():
 # sample number
 m = 5
 # feature number
 n = 3
 total = m * n # construct data
 X = np.random.rand(total).reshape(m, n)
 Y = f(X).reshape(m, 1)# iris = datasets.load_iris()# X, Y = iris.data, iris.target.reshape(150, 1)# X = X[Y[:, 0] < 2]# Y = Y[Y[:, 0] < 2]# m = X.shape[0]# n = X.shape[1]
 # define parameter
 W = np.ones((n, 1), dtype=float).reshape(n, 1)
 b = 0.0
 # def forward pass++
 learning_rate = 0.1
 iter_num = 10000
 i = 0
 J = [] while i < iter_num:
 i = i + 1
 W, b = gradient_descent(X, Y, W, b, learning_rate)
 j = cost(X, Y, W, b)
 J.append(j)
 print(W, b)
 print(j)
 plt.plot(J)
 plt.show()if __name__ == '__main__':
 main()

可以看到,结果输出很接近预设参数[1,3,2]和10

是不是感觉so easy.

step: 4998 loss: 3.46349593719e-07[[ 1.00286704]
 [ 3.00463459]
 [ 2.00173473]] 9.99528287088step: 4999 loss: 3.45443124835e-07[[ 1.00286329]
 [ 3.00462853]
 [ 2.00173246]] 9.99528904819step: 5000 loss: 3.44539028368e-07

相关推荐

Docker篇(二):Docker实战,命令解析

大家好,我是杰哥上周我们通过几个问题,让大家对于Docker有了一个全局的认识。然而,说跟练往往是两个概念。从学习的角度来说,理论知识的学习,往往只是第一步,只有经过实战,才能真正掌握一门技术所以,本...

docker学习笔记——安装和基本操作

今天学习了docker的基本知识,记录一下docker的安装步骤和基本命令(以CentOS7.x为例)一、安装docker的步骤:1.yuminstall-yyum-utils2.yum-con...

不可错过的Docker完整笔记(dockerhib)

简介一、Docker简介Docker是一个开源的应用容器引擎,基于Go语言并遵从Apache2.0协议开源。Docker可以让开发者打包他们的应用以及依赖包到一个轻量级、可移植的容器中,...

扔掉运营商的 IPTV 机顶盒,全屋全设备畅看 IPTV!

其实现在看电视节目的需求确实大大降低了,折腾也只是为了单纯的让它实现,享受这个过程带来的快乐而已,哈哈!预期构想家里所有设备直接接入网络随时接收并播放IPTV直播(电信点播的节目不是太多,但好在非常稳...

第五节 Docker 入门实践:从 Hello World 到容器操作

一、Docker容器基础运行(一)单次命令执行通过dockerrun命令可以直接在容器中执行指定命令,这是体验Docker最快捷的方式:#在ubuntu:15.10容器中执行ech...

替代Docker build的Buildah简单介绍

Buildah是用于通过较低级别的coreutils接口构建OCI兼容镜像的工具。与Podman相似,Buildah不依赖于Docker或CRI-O之类的守护程序,并且不需要root特权。Builda...

Docker 命令大全(docker命令大全记录表)

容器生命周期管理run-创建并启动一个新的容器。start/stop/restart-这些命令主要用于启动、停止和重启容器。kill-立即终止一个或多个正在运行的容器rm-于删除一个或...

docker常用指令及安装rabbitMQ(docker安装rabbitmq配置环境)

一、docker常用指令启动docker:systemctlstartdocker停止docker:systemctlstopdocker重启docker:systemctlrestart...

使用Docker快速部署Storm环境(docker部署confluence)

Storm的部署虽然不是特别麻烦,但是在生产环境中,为了提高部署效率,方便管理维护,使用Docker来统一管理部署是一个不错的选择。下面是我开源的一个新的项目,一个配置好了storm与mono环境的D...

Docker Desktop安装使用指南:零基础教程

在之前的文章中,我多次提到使用Docker来安装各类软件,尤其是开源软件应用。鉴于不少读者对此有需求,我决定专门制作一期关于Docker安装与使用的详细教程。我主要以Macbook(Mac平台)为例进...

Linux如何成功地离线安装docker(linux离线安装httpd)

系统环境:Redhat7.2和Centos7.4实测成功近期因项目需要用docker,所以记录一些相关知识,由于生产环境是不能直接连接互联网,尝试在linux中离线安装docker。步骤1.下载...

Docker 类面试题(常见问题)(docker面试题目)

Docker常见问题汇总镜像相关1、如何批量清理临时镜像文件?可以使用sudodockerrmi$(sudodockerimages-q-fdanging=true)命令2、如何查看...

面试官:你知道Dubbo怎么优雅上下线的吗?你:优雅上下线是啥?

最近无论是校招还是社招,都进行的如火如荼,我也承担了很多的面试工作,在一次面试过程中,和候选人聊了一些关于Dubbo的知识。Dubbo是一个比较著名的RPC框架,很多人对于他的一些网络通信、通信协议、...

【Docker 新手入门指南】第五章:Hello Word

适合人群:完全零基础新手|学习目标:30分钟掌握Docker核心操作一、准备工作:先确认是否安装成功打开终端(Windows用户用PowerShell或GitBash),输入:docker--...

松勤软件测试:详解Docker,如何用portainer管理Docker容器

镜像管理搜索镜像dockersearch镜像名称拉取镜像dockerpullname[:tag]列出镜像dockerimages删除镜像dockerrmiimage名称或id删除...