互联网公司高频面试题目「回溯算法」:分割回文串
bigegpt 2024-10-30 01:54 5 浏览
分割问题其实可以抽象为组合问题!
通知:我将公众号文章和学习相关的资料整理到了Github :https://github.com/youngyangyang04/leetcode-master,方便大家在电脑上学习,可以fork到自己仓库,顺便也给个star支持一波吧!
131.分割回文串
题目链接:https://leetcode-cn.com/problems/palindrome-partitioning/
给定一个字符串 s,将 s 分割成一些子串,使每个子串都是回文串。
返回 s 所有可能的分割方案。
示例:
输入: "aab"
输出:
[
["aa","b"],
["a","a","b"]
]
思路
本题涉及到两个关键问题:
- 切割问题,有不同的切割方式
- 判断回文
相信这里不同的切割方式可以搞懵很多同学了。
这种题目,想用for循环暴力解法,可能都不那么容易写出来,所以要换一种暴力的方式,就是回溯。
一些同学可能想不清楚 回溯究竟是如果切割字符串呢?
我们来分析一下切割,「其实切割问题类似组合问题」。
例如对于字符串abcdef:
- 组合问题:选取一个a之后,在bcdef中再去选取第二个,选取b之后在cdef中在选取第三个.....。
- 切割问题:切割一个a之后,在bcdef中再去切割第二段,切割b之后在cdef中在切割第三段.....。
感受出来了不?
所以切割问题,也可以抽象为一颗树形结构,如图:
递归用来纵向遍历,for循环用来横向遍历,切割线(就是图中的红线)切割到字符串的结尾位置,说明找到了一个切割方法。
此时可以发现,切割问题的回溯搜索的过程和组合问题的回溯搜索的过程是差不多的。
回溯三部曲
- 递归函数参数
全局变量数组path存放切割后回文的子串,二维数组result存放结果集。(这两个参数可以放到函数参数里)
本题递归函数参数还需要startIndex,因为切割过的地方,不能重复切割,和组合问题也是保持一致的。
在经典面试题目「回溯算法」求组合总和(二) 中我们深入探讨了组合问题什么时候需要startIndex,什么时候不需要startIndex。
代码如下:
vector<vector<string>> result;
vector<string> path; // 放已经回文的子串
void backtracking (const string& s, int startIndex) {
- 递归函数终止条件
从树形结构的图中可以看出:切割线切到了字符串最后面,说明找到了一种切割方法,此时就是本层递归的终止终止条件。
「那么在代码里什么是切割线呢?」
在处理组合问题的时候,递归参数需要传入startIndex,表示下一轮递归遍历的起始位置,这个startIndex就是切割线。
所以终止条件代码如下:
void backtracking (const string& s, int startIndex) {
// 如果起始位置已经大于s的大小,说明已经找到了一组分割方案了
if (startIndex >= s.size()) {
result.push_back(path);
return;
}
}
- 单层搜索的逻辑
「来看看在递归循环,中如何截取子串呢?」
在for (int i = startIndex; i < s.size(); i++)循环中,我们 定义了起始位置startIndex,那么 [startIndex, i] 就是要截取的子串。
首先判断这个子串是不是回文,如果是回文,就加入在vector<string> path中,path用来记录切割过的回文子串。
代码如下:
for (int i = startIndex; i < s.size(); i++) {
if (isPalindrome(s, startIndex, i)) { // 是回文子串
// 获取[startIndex,i]在s中的子串
string str = s.substr(startIndex, i - startIndex + 1);
path.push_back(str);
} else { // 如果不是则直接跳过
continue;
}
backtracking(s, i + 1); // 寻找i+1为起始位置的子串
path.pop_back(); // 回溯过程,弹出本次已经填在的子串
}
「注意切割过的位置,不能重复切割,所以,backtracking(s, i + 1); 传入下一层的起始位置为i + 1」。
判断回文子串
最后我们看一下回文子串要如何判断了,判断一个字符串是否是回文。
可以使用双指针法,一个指针从前向后,一个指针从后先前,如果前后指针所指向的元素是相等的,就是回文字符串了。
那么判断回文的C++代码如下:
bool isPalindrome(const string& s, int start, int end) {
for (int i = start, j = end; i < j; i++, j--) {
if (s[i] != s[j]) {
return false;
}
}
return true;
}
如果大家对双指针法有生疏了,传送门:双指针法:总结篇
此时关键代码已经讲解完毕,整体代码如下(详细注释了)
C++整体代码
根据Carl给出的回溯算法模板:
void backtracking(参数) {
if (终止条件) {
存放结果;
return;
}
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
}
不难写出如下代码:
class Solution {
private:
vector<vector<string>> result;
vector<string> path; // 放已经回文的子串
void backtracking (const string& s, int startIndex) {
// 如果起始位置已经大于s的大小,说明已经找到了一组分割方案了
if (startIndex >= s.size()) {
result.push_back(path);
return;
}
for (int i = startIndex; i < s.size(); i++) {
if (isPalindrome(s, startIndex, i)) { // 是回文子串
// 获取[startIndex,i]在s中的子串
string str = s.substr(startIndex, i - startIndex + 1);
path.push_back(str);
} else { // 不是回文,跳过
continue;
}
backtracking(s, i + 1); // 寻找i+1为起始位置的子串
path.pop_back(); // 回溯过程,弹出本次已经填在的子串
}
}
bool isPalindrome(const string& s, int start, int end) {
for (int i = start, j = end; i < j; i++, j--) {
if (s[i] != s[j]) {
return false;
}
}
return true;
}
public:
vector<vector<string>> partition(string s) {
result.clear();
path.clear();
backtracking(s, 0);
return result;
}
};
总结
这道题目在leetcode上是中等,但可以说是hard的题目了,但是代码其实就是按照模板的样子来的。
那么难究竟难在什么地方呢?
「我列出如下几个难点:」
- 切割问题可以抽象为组合问题
- 如何模拟那些切割线
- 切割问题中递归如何终止
- 在递归循环中如何截取子串
- 如何判断回文
「我们平时在做难题的时候,总结出来难究竟难在哪里也是一种需要锻炼的能力」。
一些同学可能遇到题目比较难,但是不知道题目难在哪里,反正就是很难。其实这样还是思维不够清晰,这种总结的能力需要多接触多锻炼。
「本题我相信很多同学主要卡在了第一个难点上:就是不知道如何切割,甚至知道要用回溯法,也不知道如何用。也就是没有体会到按照求组合问题的套路就可以解决切割」。
如果意识到这一点,算是重大突破了。接下来就可以对着模板照葫芦画瓢。
「但接下来如何模拟切割线,如何终止,如何截取子串,其实都不好想,最后判断回文算是最简单的了」。
除了这些难点,「本题还有细节,例如:切割过的地方不能重复切割所以递归函数需要传入i + 1」。
所以本题应该是一个道hard题目了。
「可能刷过这道题目的录友都没感受到自己原来克服了这么多难点,就把这道题目AC了」,这应该叫做无招胜有招,人码合一,哈哈哈。
当然,本题131.分割回文串还可以用暴力搜索一波,132.分割回文串II和1278.分割回文串III 爆搜就会超时,需要使用动态规划了,我们会在动态规划系列中详细讲解!
「就酱,如果感觉「代码随想录」不错,就把Carl宣传一波吧!」
我是程序员Carl,个人主页:https://github.com/youngyangyang04
这里每天8:35准时推送一道经典算法题目,我选择的每道题目都不是孤立的,而是由浅入深,环环相扣,帮你梳理算法知识脉络,轻松学算法!
@代码随想录 期待你的关注
相关推荐
- 悠悠万事,吃饭为大(悠悠万事吃饭为大,什么意思)
-
新媒体编辑:杜岷赵蕾初审:程秀娟审核:汤小俊审签:周星...
- 高铁扒门事件升级版!婚宴上‘冲喜’老人团:我们抢的是社会资源
-
凌晨两点改方案时,突然收到婚庆团队发来的视频——胶东某酒店宴会厅,三个穿大红棉袄的中年妇女跟敢死队似的往前冲,眼瞅着就要扑到新娘的高额钻石项链上。要不是门口小伙及时阻拦,这婚礼造型团队熬了三个月的方案...
- 微服务架构实战:商家管理后台与sso设计,SSO客户端设计
-
SSO客户端设计下面通过模块merchant-security对SSO客户端安全认证部分的实现进行封装,以便各个接入SSO的客户端应用进行引用。安全认证的项目管理配置SSO客户端安全认证的项目管理使...
- 还在为 Spring Boot 配置类加载机制困惑?一文为你彻底解惑
-
在当今微服务架构盛行、项目复杂度不断攀升的开发环境下,SpringBoot作为Java后端开发的主流框架,无疑是我们手中的得力武器。然而,当我们在享受其自动配置带来的便捷时,是否曾被配置类加载...
- Seata源码—6.Seata AT模式的数据源代理二
-
大纲1.Seata的Resource资源接口源码2.Seata数据源连接池代理的实现源码3.Client向Server发起注册RM的源码4.Client向Server注册RM时的交互源码5.数据源连接...
- 30分钟了解K8S(30分钟了解微积分)
-
微服务演进方向o面向分布式设计(Distribution):容器、微服务、API驱动的开发;o面向配置设计(Configuration):一个镜像,多个环境配置;o面向韧性设计(Resista...
- SpringBoot条件化配置(@Conditional)全面解析与实战指南
-
一、条件化配置基础概念1.1什么是条件化配置条件化配置是Spring框架提供的一种基于特定条件来决定是否注册Bean或加载配置的机制。在SpringBoot中,这一机制通过@Conditional...
- 一招解决所有依赖冲突(克服依赖)
-
背景介绍最近遇到了这样一个问题,我们有一个jar包common-tool,作为基础工具包,被各个项目在引用。突然某一天发现日志很多报错。一看是NoSuchMethodError,意思是Dis...
- 你读过Mybatis的源码?说说它用到了几种设计模式
-
学习设计模式时,很多人都有类似的困扰——明明概念背得滚瓜烂熟,一到写代码就完全想不起来怎么用。就像学了一堆游泳技巧,却从没下过水实践,很难真正掌握。其实理解一个知识点,就像看立体模型,单角度观察总...
- golang对接阿里云私有Bucket上传图片、授权访问图片
-
1、为什么要设置私有bucket公共读写:互联网上任何用户都可以对该Bucket内的文件进行访问,并且向该Bucket写入数据。这有可能造成您数据的外泄以及费用激增,若被人恶意写入违法信息还可...
- spring中的资源的加载(spring加载原理)
-
最近在网上看到有人问@ContextConfiguration("classpath:/bean.xml")中除了classpath这种还有其他的写法么,看他的意思是想从本地文件...
- Android资源使用(android资源文件)
-
Android资源管理机制在Android的开发中,需要使用到各式各样的资源,这些资源往往是一些静态资源,比如位图,颜色,布局定义,用户界面使用到的字符串,动画等。这些资源统统放在项目的res/独立子...
- 如何深度理解mybatis?(如何深度理解康乐服务质量管理的5个维度)
-
深度自定义mybatis回顾mybatis的操作的核心步骤编写核心类SqlSessionFacotryBuild进行解析配置文件深度分析解析SqlSessionFacotryBuild干的核心工作编写...
- @Autowired与@Resource原理知识点详解
-
springIOCAOP的不多做赘述了,说下IOC:SpringIOC解决的是对象管理和对象依赖的问题,IOC容器可以理解为一个对象工厂,我们都把该对象交给工厂,工厂管理这些对象的创建以及依赖关系...
- java的redis连接工具篇(java redis client)
-
在Java里,有不少用于连接Redis的工具,下面为你介绍一些主流的工具及其特点:JedisJedis是Redis官方推荐的Java连接工具,它提供了全面的Redis命令支持,且...
- 一周热门
- 最近发表
- 标签列表
-
- mybatiscollection (79)
- mqtt服务器 (88)
- keyerror (78)
- c#map (65)
- resize函数 (64)
- xftp6 (83)
- bt搜索 (75)
- c#var (76)
- mybatis大于等于 (64)
- xcode-select (66)
- mysql授权 (74)
- 下载测试 (70)
- linuxlink (65)
- pythonwget (67)
- androidinclude (65)
- logstashinput (65)
- hadoop端口 (65)
- vue阻止冒泡 (67)
- oracle时间戳转换日期 (64)
- jquery跨域 (68)
- php写入文件 (73)
- kafkatools (66)
- mysql导出数据库 (66)
- jquery鼠标移入移出 (71)
- 取小数点后两位的函数 (73)