百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

怎样利用VGG实现手写数字识别? 手写数字识别cnn

bigegpt 2024-11-10 08:26 3 浏览

VGG可以看成是加深版的AlexNet,整个网络由卷积层和全连接层叠加而成,和AlexNet不同的是,VGG中使用的都是小尺寸的卷积(3×3),其网络架构如下图所示:

VGGNet使用的全部都是3x3的小卷积核和2x2的池化核,通过不断加深网络来提升性能。VGG可以通过重复使用简单的基础块来构建深度模型。

在tf.keras中实现VGG模型,首先来实现VGG块,它的组成规律是:连续使用多个相同的填充为1、卷积核大小为3×33×3的卷积层后接上一个步幅为2、窗口形状为2×22×2的最大池化层。卷积层保持输入的高和宽不变,而池化层则对其减半。我们使用vgg_block函数来实现这个基础的VGG块,它可以指定卷积层的数量num_convs和每层的卷积核个数num_filters:

# 定义VGG网络中的卷积块:卷积层的个数,卷积层中卷积核的个数def vgg_block(num_convs, num_filters):
    # 构建序列模型
    blk = tf.keras.models.Sequential()
    # 遍历所有的卷积层
    for _ in range(num_convs):
        # 每个卷积层:num_filter个卷积核,卷积核大小为3*3,padding是same,激活函数是relu
        blk.add(tf.keras.layers.Conv2D(num_filters,kernel_size=3,
                                    padding='same',activation='relu'))
    # 卷积块最后是一个最大池化,窗口大小为2*2,步长为2
    blk.add(tf.keras.layers.MaxPool2D(pool_size=2, strides=2))
    return blk

VGG16网络有5个卷积块,前2块使用两个卷积层,而后3块使用三个卷积层。第一块的输出通道是64,之后每次对输出通道数翻倍,直到变为512。

# 定义5个卷积块,指明每个卷积块中的卷积层个数及相应的卷积核个数
conv_arch = ((2, 64), (2, 128), (3, 256), (3, 512), (3, 512))

因为这个网络使用了13个卷积层和3个全连接层,所以经常被称为VGG-16,通过制定conv_arch得到模型架构后构建VGG16:

# 定义VGG网络def vgg(conv_arch):
    # 构建序列模型
    net = tf.keras.models.Sequential()
    # 根据conv_arch生成卷积部分
    for (num_convs, num_filters) in conv_arch:
        net.add(vgg_block(num_convs, num_filters))
    # 卷积块序列后添加全连接层
    net.add(tf.keras.models.Sequential([
        # 将特征图展成一维向量
        tf.keras.layers.Flatten(),
        # 全连接层:4096个神经元,激活函数是relu
        tf.keras.layers.Dense(4096, activation='relu'),
        # 随机失活
        tf.keras.layers.Dropout(0.5),
        # 全连接层:4096个神经元,激活函数是relu
        tf.keras.layers.Dense(4096, activation='relu'),
        # 随机失活
        tf.keras.layers.Dropout(0.5),
        # 全连接层:10个神经元,激活函数是softmax
        tf.keras.layers.Dense(10, activation='softmax')]))
    return net# 网络实例化net = vgg(conv_arch)

我们构造一个高和宽均为224的单通道数据样本来看一下模型的架构:

# 构造输入X,并将其送入到net网络中
X = tf.random.uniform((1,224,224,1))
y = net(X)
# 通过net.summay()查看网络的形状
net.summay()

网络架构如下:

Model: "sequential_15"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
sequential_16 (Sequential)   (1, 112, 112, 64)         37568     
_________________________________________________________________
sequential_17 (Sequential)   (1, 56, 56, 128)          221440    
_________________________________________________________________
sequential_18 (Sequential)   (1, 28, 28, 256)          1475328   
_________________________________________________________________
sequential_19 (Sequential)   (1, 14, 14, 512)          5899776   
_________________________________________________________________
sequential_20 (Sequential)   (1, 7, 7, 512)            7079424   
_________________________________________________________________
sequential_21 (Sequential)   (1, 10)                   119586826 
=================================================================
Total params: 134,300,362
Trainable params: 134,300,362
Non-trainable params: 0
__________________________________________________________________

手写数字势识别

因为ImageNet数据集较大训练时间较长,我们仍用前面的MNIST数据集来演示VGGNet。读取数据的时将图像高和宽扩大到VggNet使用的图像高和宽224。这个通过tf.image.resize_with_pad来实现。

import numpy as np
# 获取手写数字数据集
(train_images, train_labels), (test_images, test_labels) = mnist.load_data()
# 训练集数据维度的调整:N H W C
train_images = np.reshape(train_images,(train_images.shape[0],train_images.shape[1],train_images.shape[2],1))
# 测试集数据维度的调整:N H W C
test_images = np.reshape(test_images,(test_images.shape[0],test_images.shape[1],test_images.shape[2],1))

由于使用全部数据训练时间较长,我们定义两个方法获取部分数据,并将图像调整为224*224大小,进行模型训练:

# 定义两个方法随机抽取部分样本演示# 获取训练集数据def get_train(size):
    # 随机生成要抽样的样本的索引
    index = np.random.randint(0, np.shape(train_images)[0], size)
    # 将这些数据resize成22*227大小
    resized_images = tf.image.resize_with_pad(train_images[index],224,224,)
    # 返回抽取的
    return resized_images.numpy(), train_labels[index]# 获取测试集数据 def get_test(size):
    # 随机生成要抽样的样本的索引
    index = np.random.randint(0, np.shape(test_images)[0], size)
    # 将这些数据resize成224*224大小
    resized_images = tf.image.resize_with_pad(test_images[index],224,224,)
    # 返回抽样的测试样本
    return resized_images.numpy(), test_labels[index]

调用上述两个方法,获取参与模型训练和测试的数据集:

# 获取训练样本和测试样本
train_images,train_labels = get_train(256)
test_images,test_labels = get_test(128)

为了让大家更好的理解,我们将数据展示出来:

# 数据展示:将数据集的前九个数据集进行展示
for i in range(9):
    plt.subplot(3,3,i+1)
    # 以灰度图显示,不进行插值
    plt.imshow(train_images[i].astype(np.int8).squeeze(), cmap='gray', interpolation='none')
    # 设置图片的标题:对应的类别
    plt.title("数字{}".format(train_labels[i]))

结果为:

相关推荐

悠悠万事,吃饭为大(悠悠万事吃饭为大,什么意思)

新媒体编辑:杜岷赵蕾初审:程秀娟审核:汤小俊审签:周星...

高铁扒门事件升级版!婚宴上‘冲喜’老人团:我们抢的是社会资源

凌晨两点改方案时,突然收到婚庆团队发来的视频——胶东某酒店宴会厅,三个穿大红棉袄的中年妇女跟敢死队似的往前冲,眼瞅着就要扑到新娘的高额钻石项链上。要不是门口小伙及时阻拦,这婚礼造型团队熬了三个月的方案...

微服务架构实战:商家管理后台与sso设计,SSO客户端设计

SSO客户端设计下面通过模块merchant-security对SSO客户端安全认证部分的实现进行封装,以便各个接入SSO的客户端应用进行引用。安全认证的项目管理配置SSO客户端安全认证的项目管理使...

还在为 Spring Boot 配置类加载机制困惑?一文为你彻底解惑

在当今微服务架构盛行、项目复杂度不断攀升的开发环境下,SpringBoot作为Java后端开发的主流框架,无疑是我们手中的得力武器。然而,当我们在享受其自动配置带来的便捷时,是否曾被配置类加载...

Seata源码—6.Seata AT模式的数据源代理二

大纲1.Seata的Resource资源接口源码2.Seata数据源连接池代理的实现源码3.Client向Server发起注册RM的源码4.Client向Server注册RM时的交互源码5.数据源连接...

30分钟了解K8S(30分钟了解微积分)

微服务演进方向o面向分布式设计(Distribution):容器、微服务、API驱动的开发;o面向配置设计(Configuration):一个镜像,多个环境配置;o面向韧性设计(Resista...

SpringBoot条件化配置(@Conditional)全面解析与实战指南

一、条件化配置基础概念1.1什么是条件化配置条件化配置是Spring框架提供的一种基于特定条件来决定是否注册Bean或加载配置的机制。在SpringBoot中,这一机制通过@Conditional...

一招解决所有依赖冲突(克服依赖)

背景介绍最近遇到了这样一个问题,我们有一个jar包common-tool,作为基础工具包,被各个项目在引用。突然某一天发现日志很多报错。一看是NoSuchMethodError,意思是Dis...

你读过Mybatis的源码?说说它用到了几种设计模式

学习设计模式时,很多人都有类似的困扰——明明概念背得滚瓜烂熟,一到写代码就完全想不起来怎么用。就像学了一堆游泳技巧,却从没下过水实践,很难真正掌握。其实理解一个知识点,就像看立体模型,单角度观察总...

golang对接阿里云私有Bucket上传图片、授权访问图片

1、为什么要设置私有bucket公共读写:互联网上任何用户都可以对该Bucket内的文件进行访问,并且向该Bucket写入数据。这有可能造成您数据的外泄以及费用激增,若被人恶意写入违法信息还可...

spring中的资源的加载(spring加载原理)

最近在网上看到有人问@ContextConfiguration("classpath:/bean.xml")中除了classpath这种还有其他的写法么,看他的意思是想从本地文件...

Android资源使用(android资源文件)

Android资源管理机制在Android的开发中,需要使用到各式各样的资源,这些资源往往是一些静态资源,比如位图,颜色,布局定义,用户界面使用到的字符串,动画等。这些资源统统放在项目的res/独立子...

如何深度理解mybatis?(如何深度理解康乐服务质量管理的5个维度)

深度自定义mybatis回顾mybatis的操作的核心步骤编写核心类SqlSessionFacotryBuild进行解析配置文件深度分析解析SqlSessionFacotryBuild干的核心工作编写...

@Autowired与@Resource原理知识点详解

springIOCAOP的不多做赘述了,说下IOC:SpringIOC解决的是对象管理和对象依赖的问题,IOC容器可以理解为一个对象工厂,我们都把该对象交给工厂,工厂管理这些对象的创建以及依赖关系...

java的redis连接工具篇(java redis client)

在Java里,有不少用于连接Redis的工具,下面为你介绍一些主流的工具及其特点:JedisJedis是Redis官方推荐的Java连接工具,它提供了全面的Redis命令支持,且...