使用TensorBoard进行超参数优化 tensorrt优化
bigegpt 2024-11-10 08:27 30 浏览
在本文中,我们将介绍超参数优化,然后使用TensorBoard显示超参数优化的结果。
深度神经网络的超参数是什么?
深度学习神经网络的目标是找到节点的权重,这将帮助我们理解图像、文本或语音中的数据模式。
要做到这一点,可以使用为模型提供最佳准度和精度的值来设计神经网络参数。
那么,这些被称为超参数的参数是什么呢?
用于训练神经网络模型的不同参数称为超参数。这些超参数像旋钮一样被调优,以提高神经网络的性能,从而产生一个优化的模型。超参数的一个通俗的解释是:用来优化参数的参数。
神经网络中的一些超参数是:
1. 隐藏层的数量
1. 隐含层中单位或节点的集合的数量
1. 学习速率
1. DropOut比例
1. 迭代次数
1. 优化器的选择如SGD, Adam, AdaGrad, Rmsprop等
1. 激活函数选择如ReLU, sigmoid, leaky ReLU等
1. 批次大小
如何实现超参数优化?
超参数优化是寻找深度学习算法的优化器、学习率、等超参数值,从而获得最佳模型性能的过程。
可以使用以下技术执行超参数优化。
· 手动搜索
· 网格搜索:对指定超参数的所有可能组合进行穷举搜索,从而得到笛卡尔积。
· 随机搜索:超参数是随机选择的,不是每一个超参数的组合都被尝试。随着超参数数量的增加,随机搜索是一个更好的选择,因为它可以更快地得到超参数的良好组合。
· 贝叶斯优化:整合关于超参数的先验数据,包括模型的准确性或损失。先验信息有助于确定模型超参数选择的更好近似。
为了在TensorBoard中可视化模型的超参数并进行调优,我们将使用网格搜索技术,其中我们将使用一些超参数,如不同的节点数量,不同的优化器,或学习率等看看模型的准确性和损失。
为什么使用TensorBoard进行超参数优化?
一幅图片胜过千言万语,这也适用于复杂的深度学习模型。深度学习模型被认为是一个黑盒子,你发送一些输入数据,模型做一些复杂的计算,输出结果。
TensorBoard是Tensorflow的一个可视化工具包,用于显示不同的指标、参数和其他可视化,帮助调试、跟踪、微调、优化和共享深度学习实验结果
TensorBoard可以跟踪模型在每个训练迭代的精度和损失;
还有不同的超参数值。不同超参数值的跟踪精度将帮助您更快地微调模型。
我们将使用猫和狗数据集使用TensorBoard可视化标量、图形和分布。
https://www.kaggle.com/c/dogs-vs-cats/data
导入所需的库
导入TensorFlow和TensorBoard HParams插件以及Keras库来预处理图像和创建模型。
import tensorflow as tf
from tensorboard.plugins.hparams import api as hp
import datetime
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPooling2D
from tensorflow.keras.preprocessing.image import ImageDataGenerator, img_to_array, load_img
import numpy as np
加载TensorBoard notebook扩展
# Load the TensorBoard notebook extension
%load_ext tensorboard
创建图像分类的深度学习模型
为训练设置关键参数
BASE_PATH = 'Data\\dogs-vs-cats\\train\\'
TRAIN_PATH='Data\\dogs-vs-cats\\train_data\\'
VAL_PATH='Data\\dogs-vs-cats\\validation_data\\'batch_size = 32
epochs = 5
IMG_HEIGHT = 150
IMG_WIDTH = 150
对训练图像进行缩放和不同的增强
train_image_generator = ImageDataGenerator(
rescale=1./255,
rotation_range=45,
width_shift_range=.15,
height_shift_range=.15,
horizontal_flip=True,
zoom_range=0.3)
重新调节验证数据
validation_image_generator = ImageDataGenerator(rescale=1./255)
为训练和验证生成成批的规范化数据
train_data_gen = train_image_generator.flow_from_directory(
batch_size = batch_size,
directory=TRAIN_PATH,
shuffle=True,
target_size=(IMG_HEIGHT, IMG_WIDTH),
class_mode='categorical')
val_data_gen = validation_image_generator.flow_from_directory(batch_size = batch_size,
directory=VAL_PATH,
target_size=(IMG_HEIGHT, IMG_WIDTH),
class_mode='categorical')
为网格搜索(Grid Search)设置超参数
我们通过列出超参数的不同值或取值范围,使用了四个超参数来运行我们的实验。
对于离散超参数,将尝试所有可能的参数组合,对于实值参数,只使用下界和上界。
第一层的单元数量:256和512
dropout比例:范围在0.1到0.2之间。所以dropout比例是0。1和0。2。
优化器:adam, SGD, rmsprop
优化器的学习率:0.001,0.0001和0.0005,
我们还将准确率显示在TensorBoard 上
## Create hyperparameters
HP_NUM_UNITS=hp.HParam('num_units', hp.Discrete([ 256, 512]))
HP_DROPOUT=hp.HParam('dropout', hp.RealInterval(0.1, 0.2))
HP_LEARNING_RATE= hp.HParam('learning_rate', hp.Discrete([0.001, 0.0005, 0.0001]))
HP_OPTIMIZER=hp.HParam('optimizer', hp.Discrete(['adam', 'sgd', 'rmsprop']))METRIC_ACCURACY='accuracy'
创建和配置日志文件
log_dir ='\\logs\\fit\\' + datetime.datetime.now().strftime('%Y%m%d-%H%M%S')
with tf.summary.create_file_writer(log_dir).as_default():
hp.hparams_config(
hparams=
[HP_NUM_UNITS, HP_DROPOUT, HP_OPTIMIZER, HP_LEARNING_RATE],
metrics=[hp.Metric(METRIC_ACCURACY, display_name='Accuracy')],
)
创建、编译和训练模型
超参数不是硬编码的,但从hparams字典为不同的参数:HPDROPOUT , HPNUMUNITS ,HPOPTIMIZER ,HPLEARNINGRATE。
函数返回最后一个批次的验证准确性。
def create_model(hparams):
model = Sequential([
Conv2D(64, 3, padding='same', activation='relu',
input_shape=(IMG_HEIGHT, IMG_WIDTH ,3)),
MaxPooling2D(),
#setting the Drop out value based on HParam
Dropout(hparams[HP_DROPOUT]),
Conv2D(128, 3, padding='same', activation='relu'),
MaxPooling2D(),
Dropout(hparams[HP_DROPOUT]),
Flatten(),
Dense(hparams[HP_NUM_UNITS], activation='relu'),
Dense(2, activation='softmax')])
#setting the optimizer and learning rate
optimizer = hparams[HP_OPTIMIZER]
learning_rate = hparams[HP_LEARNING_RATE]
if optimizer == "adam":
optimizer = tf.optimizers.Adam(learning_rate=learning_rate)
elif optimizer == "sgd":
optimizer = tf.optimizers.SGD(learning_rate=learning_rate)
elif optimizer=='rmsprop':
optimizer = tf.optimizers.RMSprop(learning_rate=learning_rate)
else:
raise ValueError("unexpected optimizer name: %r" % (optimizer_name,))
# Comiple the mode with the optimizer and learninf rate specified in hparams
model.compile(optimizer=optimizer,
loss='categorical_crossentropy',
metrics=['accuracy'])
#Fit the model
history=model.fit_generator(
train_data_gen,
steps_per_epoch=1000,
epochs=epochs,
validation_data=val_data_gen,
validation_steps=1000,
callbacks=[
tf.keras.callbacks.TensorBoard(log_dir), # log metrics
hp.KerasCallback(log_dir, hparams),# log hparams
])
return history.history['val_accuracy'][-1]
对于模型的每次运行,使用超参数和最终批次精度记录hparams都会被记录。我们需要将最后一个批次的验证精度转换为标量值。
def run(run_dir, hparams):
with tf.summary.create_file_writer(run_dir).as_default():
hp.hparams(hparams) # record the values used in this trial
accuracy = create_model(hparams)
#converting to tf scalar
accuracy= tf.reshape(tf.convert_to_tensor(accuracy), []).numpy()
tf.summary.scalar(METRIC_ACCURACY, accuracy, step=1)
用不同的超参数值运行模型
这里的实验使用网格搜索,并测试第一层单元数的所有可能的超参数组合,Dropout比例、优化器及其学习率,以及准确度用于准确性。
session_num = 0for num_units in HP_NUM_UNITS.domain.values:
for dropout_rate in (HP_DROPOUT.domain.min_value, HP_DROPOUT.domain.max_value):
for optimizer in HP_OPTIMIZER.domain.values:
for learning_rate in HP_LEARNING_RATE.domain.values:
hparams = {
HP_NUM_UNITS: num_units,
HP_DROPOUT: dropout_rate,
HP_OPTIMIZER: optimizer,
HP_LEARNING_RATE: learning_rate,
}
run_name = "run-%d" % session_num
print('--- Starting trial: %s' % run_name)
print({h.name: hparams[h] for h in hparams})
run('logs/hparam_tuning/' + run_name, hparams)
session_num += 1
在HParams中可视化结果
python -m tensorboard.main --logdir="logs/hparam_tuning"
当按精度降序排序时,可以看到最优化的模型是256单元,dropout比例为0.2,rmsprop优化器学习率为0.0005。
在jupyter notebook中可以使用以下命令查看
%tensorboard --logdir='\logs\hparam_tuning'
在Tensorboard中使用Parallel Coordinates视图,显示每个超参数的单独运行情况并显示精度,查找最优化的超参数,以获得最佳的模型精度
总结
Tensorboard为超参数调优提供了一种可视化的方式来了解哪些超参数可以用于微调深度学习模型以获得最佳精度,更多的操作可以查看官方文档:
https://www.tensorflow.org/tensorboard/hyperparametertuningwith_hparams
作者:Renu Khandelwal
deephub翻译组
相关推荐
- 悠悠万事,吃饭为大(悠悠万事吃饭为大,什么意思)
-
新媒体编辑:杜岷赵蕾初审:程秀娟审核:汤小俊审签:周星...
- 高铁扒门事件升级版!婚宴上‘冲喜’老人团:我们抢的是社会资源
-
凌晨两点改方案时,突然收到婚庆团队发来的视频——胶东某酒店宴会厅,三个穿大红棉袄的中年妇女跟敢死队似的往前冲,眼瞅着就要扑到新娘的高额钻石项链上。要不是门口小伙及时阻拦,这婚礼造型团队熬了三个月的方案...
- 微服务架构实战:商家管理后台与sso设计,SSO客户端设计
-
SSO客户端设计下面通过模块merchant-security对SSO客户端安全认证部分的实现进行封装,以便各个接入SSO的客户端应用进行引用。安全认证的项目管理配置SSO客户端安全认证的项目管理使...
- 还在为 Spring Boot 配置类加载机制困惑?一文为你彻底解惑
-
在当今微服务架构盛行、项目复杂度不断攀升的开发环境下,SpringBoot作为Java后端开发的主流框架,无疑是我们手中的得力武器。然而,当我们在享受其自动配置带来的便捷时,是否曾被配置类加载...
- Seata源码—6.Seata AT模式的数据源代理二
-
大纲1.Seata的Resource资源接口源码2.Seata数据源连接池代理的实现源码3.Client向Server发起注册RM的源码4.Client向Server注册RM时的交互源码5.数据源连接...
- 30分钟了解K8S(30分钟了解微积分)
-
微服务演进方向o面向分布式设计(Distribution):容器、微服务、API驱动的开发;o面向配置设计(Configuration):一个镜像,多个环境配置;o面向韧性设计(Resista...
- SpringBoot条件化配置(@Conditional)全面解析与实战指南
-
一、条件化配置基础概念1.1什么是条件化配置条件化配置是Spring框架提供的一种基于特定条件来决定是否注册Bean或加载配置的机制。在SpringBoot中,这一机制通过@Conditional...
- 一招解决所有依赖冲突(克服依赖)
-
背景介绍最近遇到了这样一个问题,我们有一个jar包common-tool,作为基础工具包,被各个项目在引用。突然某一天发现日志很多报错。一看是NoSuchMethodError,意思是Dis...
- 你读过Mybatis的源码?说说它用到了几种设计模式
-
学习设计模式时,很多人都有类似的困扰——明明概念背得滚瓜烂熟,一到写代码就完全想不起来怎么用。就像学了一堆游泳技巧,却从没下过水实践,很难真正掌握。其实理解一个知识点,就像看立体模型,单角度观察总...
- golang对接阿里云私有Bucket上传图片、授权访问图片
-
1、为什么要设置私有bucket公共读写:互联网上任何用户都可以对该Bucket内的文件进行访问,并且向该Bucket写入数据。这有可能造成您数据的外泄以及费用激增,若被人恶意写入违法信息还可...
- spring中的资源的加载(spring加载原理)
-
最近在网上看到有人问@ContextConfiguration("classpath:/bean.xml")中除了classpath这种还有其他的写法么,看他的意思是想从本地文件...
- Android资源使用(android资源文件)
-
Android资源管理机制在Android的开发中,需要使用到各式各样的资源,这些资源往往是一些静态资源,比如位图,颜色,布局定义,用户界面使用到的字符串,动画等。这些资源统统放在项目的res/独立子...
- 如何深度理解mybatis?(如何深度理解康乐服务质量管理的5个维度)
-
深度自定义mybatis回顾mybatis的操作的核心步骤编写核心类SqlSessionFacotryBuild进行解析配置文件深度分析解析SqlSessionFacotryBuild干的核心工作编写...
- @Autowired与@Resource原理知识点详解
-
springIOCAOP的不多做赘述了,说下IOC:SpringIOC解决的是对象管理和对象依赖的问题,IOC容器可以理解为一个对象工厂,我们都把该对象交给工厂,工厂管理这些对象的创建以及依赖关系...
- java的redis连接工具篇(java redis client)
-
在Java里,有不少用于连接Redis的工具,下面为你介绍一些主流的工具及其特点:JedisJedis是Redis官方推荐的Java连接工具,它提供了全面的Redis命令支持,且...
- 一周热门
- 最近发表
- 标签列表
-
- mybatiscollection (79)
- mqtt服务器 (88)
- keyerror (78)
- c#map (65)
- resize函数 (64)
- xftp6 (83)
- bt搜索 (75)
- c#var (76)
- mybatis大于等于 (64)
- xcode-select (66)
- mysql授权 (74)
- 下载测试 (70)
- linuxlink (65)
- pythonwget (67)
- androidinclude (65)
- logstashinput (65)
- hadoop端口 (65)
- vue阻止冒泡 (67)
- oracle时间戳转换日期 (64)
- jquery跨域 (68)
- php写入文件 (73)
- kafkatools (66)
- mysql导出数据库 (66)
- jquery鼠标移入移出 (71)
- 取小数点后两位的函数 (73)