常见的图像处理技术
bigegpt 2024-11-20 12:38 4 浏览
本期文章中,让我们一起来学习以下内容。
- 通过PIL和OpenCV来使用一些常见的图像处理技术,例如将RGB图像转换为灰度图像、旋转图像、对图像进行消噪、检测图像中的边缘以及裁剪图像中的感兴趣区域。
- 使用OpenCV中的模板匹配搜索图像中的对象。
所需安装的库:PIL、OpenCV、imutils
为什么我们需要学习图像处理技术?
深度学习对于图像的分析、识别以及语义理解具有重要意义。“图像分类”、“对象检测”、“实例分割”等是深度学习在图像中的常见应用。为了能够建立更好的训练数据集,我们必须先深入了解基本的图像处理技术,例如图像增强,包括裁剪图像、图像去噪或旋转图像等。其次基本的图像处理技术同样有助于光学字符识别(OCR)。
图像处理技术通过识别关键特征或读取图像中的文本信息,来提高图像的可解释性,以便对图像中存在的对象进行分类或检测。
图片来源于Unsplash
此处提供代码和图像
导入所需的库
import cv2
from PIL import Image
首先我们使用OpenCV和PIL显示图像
使用OpenCV读取和显示图像
image = cv2.imread(r'love.jpg')
cv2.imshow("Image", image)
cv2.waitKey(0)
如果图像太大,图像的窗口将不匹配屏幕显示比例。
那么如何在屏幕上显示完整的图像?
默认情况下,显示超大图像时图像都会被裁剪,不能被完整显示出来。为了能够查
看完整图像,我们将使用OpenCV中的namedWindow(name, flag)来创建一个新的显示图像窗口。
第一个参数name是窗口的标题,将被用作标识符。 当您将flag设置为cv2.WINDOW_NORMAL时,将显示完整图像,并可以调整窗口大小。当然flag参数还有选择。
image = cv2.imread(r'love.jpg')
cv2.namedWindow('Normal Window', cv2.WINDOW_NORMAL)
cv2.imshow('Normal Window', image)
cv2.waitKey(0)
调整图像的尺寸
当我们调整图像大小时,我们可以更改图像的高度或宽度,或在保持宽高比不变的情况下同时变化高度和宽度。图片的宽高比是图片的宽度与高度的比。
image= cv2.imread(r'taj.jpg')
scale_percent =200 # percent of original size
width = int(image.shape[1] * scale_percent / 100)
height = int(image.shape[0] * scale_percent / 100)
dim = (width, height)
resized = cv2.resize(image, dim, interpolation = cv2.INTER_AREA)
cv2.imshow("Resize", resized)
cv2.waitKey(0)
使用PIL读取和显示图像
我们将使用open()加载图像,然后使用show()进行显示。
使用image.show()创建一个临时文件
pil_image= Image.open(r'love.jpg')
pil_image.show("PIL Image")
如果我们对图像中目标的边缘或其他特征感兴趣,要如何对他们进行识别呢?
灰度图像常常用于识别目标物体的边缘,因为灰度图像不仅助于理解图像中对比度、阴影渐变,而且有助于理解图像特征。
与灰度图像的2D通道相比,RGB图像具有三个通道:红色,绿色和蓝色。与彩色图像相比,灰度图像每个像素的信息更少,因此灰度图像的处理时间将更快。
使用OpenCV对彩色图像进行灰度缩放
以下是使用cvtColor()将彩色图像转换为灰度图像的方法及转换结果。
image = cv2.imread(r'love.jpg')
gray_image= cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
cv2.namedWindow('Gray Image', cv2.WINDOW_NORMAL)
cv2.imshow('Gray Image', gray_image)
cv2.waitKey(0)
完成转换的灰度图
使用PIL对彩色图像进行灰度缩放
convert()提供了此图像转换的另一种方式, “ L”模式用于转换为灰度图像,“ RGB”模式用于转换为彩色图像。
pil_image= Image.open(r'love.jpg')
gray_pil=pil_image.convert('L')
gray_pil.show()
使用OpenCV进行边缘检测
我们将使用Canny算子对图像中的边缘进行检测。Canny边缘检测是通过灰度图像,使用高阶算法完成的。
Canny():第一个参数是输入图像,第二个和第三个参数是阈值1和阈值2的值。
强度梯度大于threshold2的边缘被视为边缘,低于threshold1的边缘被视为非边缘。非边缘将被删除。两个阈值之间的任何梯度强度值都根据它们的连通性被分类为边缘或非边缘。
image= cv2.imread(r'taj.jpg')
cv2.namedWindow("Edge", cv2.WINDOW_NORMAL)
denoised_image = cv2.Canny(image, 100,200 )
cv2.imshow("Edge", denoised_image)
cv2.waitKey(0)
Canny边缘处理
如果图像发生一定的倾斜或旋转,应该怎样进行调整?
OCR对倾斜文本的提取效果不佳,因此我们需要对原图像进行校正。可以使用OpenCV和PIL中的rotate()对图像进行角度校正。
使用OpenCV旋转图像
rotate()会依据函数中的第二个参数rotationCode的值来旋转图像。
旋转参数值有以下几种:
- cv2.ROTATE_90_CLOCKWISE
- cv2. ROTATE_90_COUNTERCLOCKWISE
- cv2.ROTATE_180
image = cv2.imread(r'love.jpg')
cv2.namedWindow("Rotated Image", cv2.WINDOW_NORMAL)
rotated_img= cv2.rotate(image,cv2.ROTATE_90_CLOCKWISE )
cv2.imshow("Rotated Image", rotated_img)
cv2.waitKey(0)
使用OpenCV将图像顺时针旋转90度
如果我们想将图像旋转特定角度怎么办?
根据特定角度旋转图像
在下面的代码中,图像以60度为增量旋转
使用 imutils中的rotate()
import imutils
import numpy as npimage = cv2.imread(r'love.jpg')# loop over the rotation angles
for angle in np.arange(0, 360, 60):
cv2.namedWindow("Rotated", cv2.WINDOW_NORMAL)
rotated = imutils.rotate(image, angle)
cv2.imshow("Rotated", rotated)
cv2.waitKey(0)
使用imutils以60度为增量旋转图像
使用PIL旋转图像
此处使用PIL将图像旋转110度
pil_image= Image.open(r'love.jpg')
rotate_img_pil=pil_image.rotate(110)
rotate_img_pil.show()
使用PIL将图像旋转110度
当图像因噪声而变差并影响图像分析时,我们应该如何提高图像质量?
使用OpenCV对图像进行除噪
噪声并不是我们想得到的信号,就图像而言,它会使图像受到干扰而失真。
使用OpenCV最小化图像中出现的噪声,首先输入含有噪声的图像
image= cv2.imread(r'taj.jpg')
cv2.namedWindow("Noised Image", cv2.WINDOW_NORMAL)
cv2.imshow("Noised Image", image)
cv2.waitKey(0)
OpenCV有多种方法可以消除图像中的噪点。我们将使用cv.fastNlMeansDenoisingColored(),来消除彩色图像中的噪点。
fastNIMeansDenoising函数的常见参数:
- src: 源图像
- dst: 输出与src具有相同大小和类型的图像
- h: 调节过滤器强度。 较高的h值可以完全消除噪点和图像细节,较小的h值可以保留图像细节以及一些噪点。
- hForColorComponents: 与h相同,但仅用于彩色图像,通常与h相同
- templateWindowSize: 默认0(推荐7)
- searchWindowSize: 默认0(推荐21)
image= cv2.imread(r'taj.jpg')
cv2.namedWindow("Denoised Image", cv2.WINDOW_NORMAL)
denoised_image = cv2.fastNlMeansDenoisingColored(image,None, h=5)
cv2.imshow("Denoised Image", denoised_image)
cv2.waitKey(0)
如何从图像中提取某些感兴趣的区域?
裁剪图像
裁剪图像可让我们提取图像中的兴趣区域。
我们将裁剪泰姬陵的图像,从图像中删除其他细节,使图像仅保留泰姬陵。
使用OpenCV裁剪图像
在OpenCV中裁剪是通过将图像数组切成薄片来进行的,我们先传递y坐标的起点和终点,然后传递x坐标的起点和终点。
image[y_start:y_end, x_start:x_end]
image= cv2.imread(r'taj.jpg')
resized_img= image[15:170, 20:200]
cv2.imshow("Resize", resized_img)
cv2.waitKey(0)
使用PIL裁剪图像
PIL的crop()允许我们裁剪图像的矩形区域。crop()的参数是矩形左上角和右下角的像素坐标。
pil_image = Image.open(r'taj.jpg')
# Get the Size of the image in pixels
width, height = pil_image.size
# Setting the cropped image co-ordinates
left = 3
top = height /25
right = 200
bottom = 3 * height / 4
# Crop the image based on the above dimension
cropped_image = pil_image.crop((left, top, right, bottom))
# Shows the image in image viewer
cropped_image.show()
模板匹配
我们可以提供模板和OpenCV中的matchTemplate()在图像中搜索该模板并提取其位置。
这个模板会像卷积神经网络一样在整个图像上滑动,并尝试将模板与输入图像进行匹配。
minMaxLoc()用于获取最大值/最小值,它是通过矩形的左上角开始沿着宽度和高度获取值。
模板匹配有6种方法:
- cv2.TM_SQDIFF
- cv2.TM_SQDI
- cv2.TM_C
- cv2.TM_CCORR_NORMED
- cv2.TM_CCOEFF
- cv2.TM_CCOEFF_NORMED
在下面的示例中,我们将从主图中裁剪一小部分创建模板。
用于模板匹配的方法是TM_CCOEFF_NORMED。匹配的阈值设置为0.95。当匹配概率大于0.95时,该函数将会在与该匹配相对应的区域周围绘制一个矩形。
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread(r'love.jpg',0)cv2.imshow("main",img)
cv2.waitKey(0)template = cv2.imread(r'template1.png',0)
cv2.imshow("Template",template)
cv2.waitKey(0)w, h = template.shape[::-1]
methods = [ 'cv2.TM_CCOEFF_NORMED']for meth in methods:
method = eval(meth)# Apply template Matching
res = cv2.matchTemplate(img,template,method)
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
threshold=0.95
loc=np.where(res>threshold)
if len(loc[0])>0:# If the method is TM_SQDIFF or TM_SQDIFF_NORMED, take minimum
if method in [ cv2.TM_SQDIFF_NORMED]:
top_left = min_loc
bottom_right = (top_left[0] + w, top_left[1] + h)cv2.rectangle(img,top_left, bottom_right,100,20)plt.subplot(121),plt.imshow(res,cmap = 'gray')
plt.title('Matching Result'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img,cmap = 'gray')
plt.title('Detected Point'), plt.xticks([]), plt.yticks([])
plt.suptitle(meth)plt.show()
else:
print("Template not matched")
结论
我们所讨论的最常见图像处理技术可用于分析图像,例如图像分类,目标检测以及OCR。
- 上一篇:视觉测试工具箱
- 下一篇:为什么一个AI要看《英雄联盟》的游戏直播?
相关推荐
- 悠悠万事,吃饭为大(悠悠万事吃饭为大,什么意思)
-
新媒体编辑:杜岷赵蕾初审:程秀娟审核:汤小俊审签:周星...
- 高铁扒门事件升级版!婚宴上‘冲喜’老人团:我们抢的是社会资源
-
凌晨两点改方案时,突然收到婚庆团队发来的视频——胶东某酒店宴会厅,三个穿大红棉袄的中年妇女跟敢死队似的往前冲,眼瞅着就要扑到新娘的高额钻石项链上。要不是门口小伙及时阻拦,这婚礼造型团队熬了三个月的方案...
- 微服务架构实战:商家管理后台与sso设计,SSO客户端设计
-
SSO客户端设计下面通过模块merchant-security对SSO客户端安全认证部分的实现进行封装,以便各个接入SSO的客户端应用进行引用。安全认证的项目管理配置SSO客户端安全认证的项目管理使...
- 还在为 Spring Boot 配置类加载机制困惑?一文为你彻底解惑
-
在当今微服务架构盛行、项目复杂度不断攀升的开发环境下,SpringBoot作为Java后端开发的主流框架,无疑是我们手中的得力武器。然而,当我们在享受其自动配置带来的便捷时,是否曾被配置类加载...
- Seata源码—6.Seata AT模式的数据源代理二
-
大纲1.Seata的Resource资源接口源码2.Seata数据源连接池代理的实现源码3.Client向Server发起注册RM的源码4.Client向Server注册RM时的交互源码5.数据源连接...
- 30分钟了解K8S(30分钟了解微积分)
-
微服务演进方向o面向分布式设计(Distribution):容器、微服务、API驱动的开发;o面向配置设计(Configuration):一个镜像,多个环境配置;o面向韧性设计(Resista...
- SpringBoot条件化配置(@Conditional)全面解析与实战指南
-
一、条件化配置基础概念1.1什么是条件化配置条件化配置是Spring框架提供的一种基于特定条件来决定是否注册Bean或加载配置的机制。在SpringBoot中,这一机制通过@Conditional...
- 一招解决所有依赖冲突(克服依赖)
-
背景介绍最近遇到了这样一个问题,我们有一个jar包common-tool,作为基础工具包,被各个项目在引用。突然某一天发现日志很多报错。一看是NoSuchMethodError,意思是Dis...
- 你读过Mybatis的源码?说说它用到了几种设计模式
-
学习设计模式时,很多人都有类似的困扰——明明概念背得滚瓜烂熟,一到写代码就完全想不起来怎么用。就像学了一堆游泳技巧,却从没下过水实践,很难真正掌握。其实理解一个知识点,就像看立体模型,单角度观察总...
- golang对接阿里云私有Bucket上传图片、授权访问图片
-
1、为什么要设置私有bucket公共读写:互联网上任何用户都可以对该Bucket内的文件进行访问,并且向该Bucket写入数据。这有可能造成您数据的外泄以及费用激增,若被人恶意写入违法信息还可...
- spring中的资源的加载(spring加载原理)
-
最近在网上看到有人问@ContextConfiguration("classpath:/bean.xml")中除了classpath这种还有其他的写法么,看他的意思是想从本地文件...
- Android资源使用(android资源文件)
-
Android资源管理机制在Android的开发中,需要使用到各式各样的资源,这些资源往往是一些静态资源,比如位图,颜色,布局定义,用户界面使用到的字符串,动画等。这些资源统统放在项目的res/独立子...
- 如何深度理解mybatis?(如何深度理解康乐服务质量管理的5个维度)
-
深度自定义mybatis回顾mybatis的操作的核心步骤编写核心类SqlSessionFacotryBuild进行解析配置文件深度分析解析SqlSessionFacotryBuild干的核心工作编写...
- @Autowired与@Resource原理知识点详解
-
springIOCAOP的不多做赘述了,说下IOC:SpringIOC解决的是对象管理和对象依赖的问题,IOC容器可以理解为一个对象工厂,我们都把该对象交给工厂,工厂管理这些对象的创建以及依赖关系...
- java的redis连接工具篇(java redis client)
-
在Java里,有不少用于连接Redis的工具,下面为你介绍一些主流的工具及其特点:JedisJedis是Redis官方推荐的Java连接工具,它提供了全面的Redis命令支持,且...
- 一周热门
- 最近发表
- 标签列表
-
- mybatiscollection (79)
- mqtt服务器 (88)
- keyerror (78)
- c#map (65)
- resize函数 (64)
- xftp6 (83)
- bt搜索 (75)
- c#var (76)
- mybatis大于等于 (64)
- xcode-select (66)
- mysql授权 (74)
- 下载测试 (70)
- linuxlink (65)
- pythonwget (67)
- androidinclude (65)
- logstashinput (65)
- hadoop端口 (65)
- vue阻止冒泡 (67)
- oracle时间戳转换日期 (64)
- jquery跨域 (68)
- php写入文件 (73)
- kafkatools (66)
- mysql导出数据库 (66)
- jquery鼠标移入移出 (71)
- 取小数点后两位的函数 (73)