百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

滑块验证码识别、破解-技术详解(JAVA)

bigegpt 2024-11-20 12:38 4 浏览

滑块验证码是目前网络上使用最多的,也是体验相对来说比较好的一种验证码。但爬虫和反爬虫就像矛和盾一样的关系相互促进相互影响,互联网技术就是在这样的不断碰撞中向前发展。

结合我自己的个人工作经验,来聊聊滑块验证码,我们就拿京东登陆页面的滑块验证举例,进行详细分解学习。

目标:通过算法找到需要滑动的滑块(下文一律叫切片区)距离背景目标区域(下文一律叫背景区)的距离,然后自动拖动完成拼接。


一、利用Chrome-F12的开发者工具来定位滑块验证码的请求地址:

1、在google浏览器中打开对应的网站,进入到滑块验证码页面

2、在验证码页面按F12,进入Network区

3、点击验证码右上角的换一张(图中标号为1),目的是捕获验证码的请求地址

4、在name区可以看到多个情况地址,找到其中的验证码请求地址,这里是g.html(图中标号为2)

5、在Headers表头可以看到对应此链接地址的情况地址,以及请求方式,这里是GET请求

(注:后期可以通过JS或者Java等模拟网站GET请求来获取验证码信息)


二、分析、查找"切片区"和"背景区"的对应图片数据信息:

1、点击开发者工具中的Response来查看请求的返回值

2、这里是一个JSON串格式,其中bg对应的值就是背景图片区域的base64字符串值,patch对应的值就是切片区base64字符串值.

3、将这些base64字符串值转换成图片,我们看一下背景区和切片区字符串对应的具体图像:

    		//切片对应的base64String
    		String sliceImg="iVBORw0KGgoAAAANSUhEUgAAADIAAA.....";//内容太多省略,自己从浏览器中获取即可
    		//背景区对应的base64String
    		String bgImg = "iVBORw0KGgoAAAANSUhE....";//内容太多省略,自己从浏览器中获取即可

       	//背景区
    		BufferedImage biBuffer = base64StringToImg(bgImg);
    		//切片区
    		BufferedImage sliceBuffer = base64StringToImg(sliceImg);
    		
       	//将图片输出到本地查看
    		ImageIO.write(biBuffer,
    				"png", new File("E:\\bgImg.png"));
    		ImageIO.write(sliceBuffer,
    				"png", new File("E:\\sliceImg.png"));


	/**
	 * base64字符串转存图片
	 * @param base64String base64字符串
	 * @return  BufferedImage
	 */
   public static BufferedImage base64StringToImg(final String base64String) {
       try {
           BASE64Decoder decoder = new BASE64Decoder();
           byte[] bytes = decoder.decodeBuffer(base64String);
           ByteArrayInputStream bais = new ByteArrayInputStream(bytes);
           return ImageIO.read(bais);
       } catch (final IOException ioe) {
           throw new UncheckedIOException(ioe);
       }
   }  

三、(重点,核心)利用orc模板匹配算法进行匹配,查找最相似区域,也就是我们的期望的坐标点:
废话不多说,直接上代码:

import static com.googlecode.javacv.cpp.opencv_core.CV_32FC1;
import static com.googlecode.javacv.cpp.opencv_core.cvCreateMat;
import static com.googlecode.javacv.cpp.opencv_core.cvMinMaxLoc;
import static com.googlecode.javacv.cpp.opencv_imgproc.CV_TM_CCOEFF_NORMED;
import static com.googlecode.javacv.cpp.opencv_imgproc.cvMatchTemplate;
import java.awt.Color;
import java.awt.Graphics;
import java.awt.Rectangle;
import java.awt.image.BufferedImage;
import java.io.ByteArrayInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.UncheckedIOException;
import java.util.ArrayList;
import java.util.List;
import javax.imageio.ImageIO;
import com.googlecode.javacv.cpp.opencv_core;
import com.googlecode.javacv.cpp.opencv_core.CvMat;
import com.googlecode.javacv.cpp.opencv_core.CvSize;
import com.googlecode.javacv.cpp.opencv_core.IplImage;
import com.googlecode.javacv.cpp.opencv_imgproc;
import sun.misc.BASE64Decoder;

public class Test {

	public static void main(String[] args) throws IOException {
    //切片对应的base64String
    String sliceImg="iVBORw0KGgoAAAANSUhEUgAAADIAAA.....";//内容太多省略,自己从浏览器中获取即可
    //背景区对应的base64String
    String bgImg = "iVBORw0KGgoAAAANSUhE....";//内容太多省略,自己从浏览器中获取即可

		// 背景区
		BufferedImage biBuffer = base64StringToImg(bgImg);
		// 切片区
		BufferedImage sliceBuffer = base64StringToImg(sliceImg);

		// 由于切片矩形区域存在透明区域,所以预处理将透明区域变成白色,方便后面对图片二值化处理。
		// (重点:如果这里不对透明区域预处理,切片预处理后将只有一种颜色导致匹配失败)
		int white = new Color(255, 255, 255).getRGB();
		for (int x = 0; x < sliceBuffer.getWidth(); x++) {
			for (int y = 0; y < sliceBuffer.getHeight(); y++) {
				if ((sliceBuffer.getRGB(x, y) >> 24) == 0) {
					sliceBuffer.setRGB(x, y, white);
				}
			}
		}

		IplImage sourceImage = IplImage.createFrom(biBuffer);
		IplImage targetImage = IplImage.createFrom(sliceBuffer);
		CvMat sourceMat = sourceImage.asCvMat();
		CvMat targetMat = targetImage.asCvMat();

		// 模板匹配算法,根据目标图片在背景图片中查找相似的区域
		List<Rectangle> a = matchTemplateTest(sourceMat, targetMat);

		// 取第一个值,也就是匹配到的最相识的区域,可以定位目标坐标
		// 也是我们期望的坐标点
		Rectangle rec = a.get(0);

		// 下面是验证,将识别到的区域用红色矩形框标识出来,进行验证看是否正确
		Graphics g = biBuffer.getGraphics();

		// 画笔颜色
		g.setColor(Color.RED);

		// 矩形框(原点x坐标,原点y坐标,矩形的长,矩形的宽)
		g.drawRect(rec.x, rec.y, rec.width, rec.height);
		g.dispose();
    
    //输出到本地,验证区域查找是否正确
		FileOutputStream out = new FileOutputStream("d:\\checkImage.png");
		ImageIO.write(biBuffer, "png", out);
	}
	/**
	 * 模板匹配算法,根据目标图片在背景图片中查找相似的区域
	 * @param sourceMat 背景区域图片数组矩阵
	 * @param targetMat 切片目标区域图片数组矩阵
	 * @return 坐标点集合
	 */
	public static List<Rectangle> matchTemplateTest(CvMat sourceMat, CvMat targetMat) {
		List<Rectangle> rtn = new ArrayList<Rectangle>();

    //对图象进行单通道、二值化处理
		CvMat source = opencv_core.cvCreateMat(sourceMat.rows(), sourceMat.cols(), opencv_core.CV_8UC1);
		CvMat target = opencv_core.cvCreateMat(targetMat.rows(), targetMat.cols(), opencv_core.CV_8UC1);
		opencv_imgproc.cvCvtColor(sourceMat, source, opencv_imgproc.CV_BGR2GRAY);
		opencv_imgproc.cvCvtColor(targetMat, target, opencv_imgproc.CV_BGR2GRAY);

		CvSize targetSize = target.cvSize();
		CvSize sourceSize = source.cvSize();

		CvSize resultSize = new CvSize();
		resultSize.width(sourceSize.width() - targetSize.width() + 1);
		resultSize.height(sourceSize.height() - targetSize.height() + 1);

		CvMat result = cvCreateMat(resultSize.height(), resultSize.width(), CV_32FC1);
    
    //利用模板匹配算法进行查找
		cvMatchTemplate(source, target, result, CV_TM_CCOEFF_NORMED);
		opencv_core.CvPoint maxLoc = new opencv_core.CvPoint();
		opencv_core.CvPoint minLoc = new opencv_core.CvPoint();
		double[] minVal = new double[2];
		double[] maxVal = new double[2];
    
    //找出图片数据中最大值及最小值的数据
		cvMinMaxLoc(result, minVal, maxVal, minLoc, maxLoc, null);
		Rectangle rec = new Rectangle(maxLoc.x(), maxLoc.y(), target.cols(), target.rows());
    //将查找到的坐标按最优值顺序放入数组
		rtn.add(rec);
    
		source.release();
		target.release();
		result.release();
		opencv_core.cvReleaseMat(result);
		opencv_core.cvReleaseMat(source);
		opencv_core.cvReleaseMat(target);
		source = null;
		target = null;
		result = null;
		return rtn;
	}

我们看一下识别到的结果区域(红色矩形标识就是有系统自动识别出来的)霸气不霸气:

四、根据第三步得到的移动坐标点进行坐标移动(这太小菜了,就不大篇幅在这里啰嗦了,可以使用你知道的任何技术进行模拟坐标移动),我用autoit进行举例;

//autoit代码块
//移动鼠标指针。
MouseMove ( x, y [, 速度] )

//参数说明:

x:要移动到的目标位置的 X 坐标。

y:要移动到的目标位置的 Y 坐标。

速度:鼠标移动速度,可设数值范围在 1(最快)和 100(最慢)之间。若设置速度为 0 则立即移动鼠标到指定位置。默认速度为 10。

相关推荐

悠悠万事,吃饭为大(悠悠万事吃饭为大,什么意思)

新媒体编辑:杜岷赵蕾初审:程秀娟审核:汤小俊审签:周星...

高铁扒门事件升级版!婚宴上‘冲喜’老人团:我们抢的是社会资源

凌晨两点改方案时,突然收到婚庆团队发来的视频——胶东某酒店宴会厅,三个穿大红棉袄的中年妇女跟敢死队似的往前冲,眼瞅着就要扑到新娘的高额钻石项链上。要不是门口小伙及时阻拦,这婚礼造型团队熬了三个月的方案...

微服务架构实战:商家管理后台与sso设计,SSO客户端设计

SSO客户端设计下面通过模块merchant-security对SSO客户端安全认证部分的实现进行封装,以便各个接入SSO的客户端应用进行引用。安全认证的项目管理配置SSO客户端安全认证的项目管理使...

还在为 Spring Boot 配置类加载机制困惑?一文为你彻底解惑

在当今微服务架构盛行、项目复杂度不断攀升的开发环境下,SpringBoot作为Java后端开发的主流框架,无疑是我们手中的得力武器。然而,当我们在享受其自动配置带来的便捷时,是否曾被配置类加载...

Seata源码—6.Seata AT模式的数据源代理二

大纲1.Seata的Resource资源接口源码2.Seata数据源连接池代理的实现源码3.Client向Server发起注册RM的源码4.Client向Server注册RM时的交互源码5.数据源连接...

30分钟了解K8S(30分钟了解微积分)

微服务演进方向o面向分布式设计(Distribution):容器、微服务、API驱动的开发;o面向配置设计(Configuration):一个镜像,多个环境配置;o面向韧性设计(Resista...

SpringBoot条件化配置(@Conditional)全面解析与实战指南

一、条件化配置基础概念1.1什么是条件化配置条件化配置是Spring框架提供的一种基于特定条件来决定是否注册Bean或加载配置的机制。在SpringBoot中,这一机制通过@Conditional...

一招解决所有依赖冲突(克服依赖)

背景介绍最近遇到了这样一个问题,我们有一个jar包common-tool,作为基础工具包,被各个项目在引用。突然某一天发现日志很多报错。一看是NoSuchMethodError,意思是Dis...

你读过Mybatis的源码?说说它用到了几种设计模式

学习设计模式时,很多人都有类似的困扰——明明概念背得滚瓜烂熟,一到写代码就完全想不起来怎么用。就像学了一堆游泳技巧,却从没下过水实践,很难真正掌握。其实理解一个知识点,就像看立体模型,单角度观察总...

golang对接阿里云私有Bucket上传图片、授权访问图片

1、为什么要设置私有bucket公共读写:互联网上任何用户都可以对该Bucket内的文件进行访问,并且向该Bucket写入数据。这有可能造成您数据的外泄以及费用激增,若被人恶意写入违法信息还可...

spring中的资源的加载(spring加载原理)

最近在网上看到有人问@ContextConfiguration("classpath:/bean.xml")中除了classpath这种还有其他的写法么,看他的意思是想从本地文件...

Android资源使用(android资源文件)

Android资源管理机制在Android的开发中,需要使用到各式各样的资源,这些资源往往是一些静态资源,比如位图,颜色,布局定义,用户界面使用到的字符串,动画等。这些资源统统放在项目的res/独立子...

如何深度理解mybatis?(如何深度理解康乐服务质量管理的5个维度)

深度自定义mybatis回顾mybatis的操作的核心步骤编写核心类SqlSessionFacotryBuild进行解析配置文件深度分析解析SqlSessionFacotryBuild干的核心工作编写...

@Autowired与@Resource原理知识点详解

springIOCAOP的不多做赘述了,说下IOC:SpringIOC解决的是对象管理和对象依赖的问题,IOC容器可以理解为一个对象工厂,我们都把该对象交给工厂,工厂管理这些对象的创建以及依赖关系...

java的redis连接工具篇(java redis client)

在Java里,有不少用于连接Redis的工具,下面为你介绍一些主流的工具及其特点:JedisJedis是Redis官方推荐的Java连接工具,它提供了全面的Redis命令支持,且...