Python闭包|你应该知道的常见用例(下)
bigegpt 2024-12-09 10:51 3 浏览
引言
在 Python 编程语言中,闭包通常指的是一个嵌套函数,即在一个函数内部定义的另一个函数。这个嵌套的函数能够访问并保留其外部函数作用域中的变量。这种结构就构成了一个闭包。
闭包在函数式编程语言中非常普遍。在 Python 中,闭包特别有用,因为它使得你可以创建基于函数的装饰器,这是一种非常强大的功能。
通过本教程[1],你将:
- 了解闭包的概念以及它们在 Python 中的运作方式
- 掌握闭包的典型应用场景
- 探索闭包的替代方法 为了更好地理解本教程,你需要对 Python 的一些基本概念有所了解,比如函数、嵌套函数、装饰器、类和可调用对象。
用闭包编写装饰器
装饰器是 Python 中一个非常强大的功能,它允许你动态地修改函数的行为。在 Python 中,有两种类型的装饰器:
- 基于函数的装饰器
- 基于类的装饰器
基于函数的装饰器是一个函数,它接受一个函数对象作为参数,并返回另一个增加了额外功能的函数对象。这个返回的函数对象也是一个闭包。因此,在创建基于函数的装饰器时,你会用到闭包。
如你所知,装饰器可以在不修改函数内部代码的情况下改变函数的行为。实际上,基于函数的装饰器就是闭包。它们的特点是主要用来修改你传递给装饰器函数的函数行为。
这里有一个简单的装饰器示例,它在原有函数功能的基础上增加了额外的消息输出:
>>> def decorator(function):
... def closure():
... print("Doing something before calling the function.")
... function()
... print("Doing something after calling the function.")
... return closure
...
在这个示例中,外层函数充当装饰器的角色。这个函数返回一个闭包对象,它通过增加额外的功能来改变被装饰的输入函数对象的原有行为。即便是在 decorator() 函数执行完毕后,闭包仍然能够对输入函数产生影响。
以下是你如何利用装饰器语法来动态地改变一个普通 Python 函数的行为:
>>> @decorator
... def greet():
... print("Hi, Pythonista!")
...
>>> greet()
Doing something before calling the function.
Hi, Pythonista!
Doing something after calling the function.
在这个示例中,你通过 @decorator 来调整 greet() 函数的行为。请注意,现在调用 greet() 时,你不仅得到了它的基本功能,还额外获得了装饰器提供的功能。
利用闭包实现记忆化
缓存能够通过减少不必要的重复计算来提升算法的效率。记忆化是一种防止函数对相同输入多次执行的常用缓存技术。
记忆化的工作原理是将特定输入参数集的结果存储在内存中,之后在需要时直接引用这些结果。你可以利用闭包来实现记忆化。
在下面的示例中,你使用了一个装饰器——它本身也是一个闭包——来缓存一个假设的、计算成本高昂的函数的结果值:
>>> def memoize(function):
... cache = {}
... def closure(number):
... if number not in cache:
... cache[number] = function(number)
... return cache[number]
... return closure
...
在这个例子中,memoize() 函数接收一个函数对象作为参数,并返回一个新的闭包对象。这个内部函数仅对尚未处理的数字执行输入函数。已处理的数字及其输入函数的结果被存储在 cache 字典中,以供后续使用。
现在,假设你有一个如下的示例函数,它模拟了一个计算成本较高的操作:
>>> from time import sleep
>>> def slow_operation(number):
... sleep(0.5)
...
该函数将代码的执行仅保留半秒,以模仿昂贵的操作。为此,您可以使用时间模块中的 sleep() 函数。 您可以使用以下代码测量函数的执行时间:
>>> from timeit import timeit
>>> timeit(
... "[slow_operation(number) for number in [2, 3, 4, 2, 3, 4]]",
... globals=globals(),
... number=1,
... )
3.02610950000053
在这个代码片段中,你利用了 timeit 模块的 timeit() 函数来测量执行 slow_operation() 函数时,使用一系列值作为输入的耗时。处理六个输入值时,代码耗时略超过三秒。你可以通过跳过重复的输入值,并使用记忆化技术来提高这个计算过程的效率。
接下来,按照下面的例子使用 @memoize 装饰器来装饰 slow_operation() 函数。然后,执行计时代码:
>>> @memoize
... def slow_operation(number):
... sleep(0.5)
...
>>> timeit(
... "[slow_operation(number) for number in [2, 3, 4, 2, 3, 4]]",
... globals=globals(),
... number=1,
... )
1.5151869590008573
现在,由于采用了记忆化技术,相同代码的执行时间缩短了一半。这是因为 slow_operation() 函数不会对重复的输入值再次执行。
利用闭包实现封装
在面向对象编程(OOP)中,类提供了一种将数据和行为整合到单个实体中的机制。OOP 中的一个核心需求是数据封装,这一原则建议保护对象的数据不受外部干扰,并阻止直接访问。
在 Python 中,实现严格的数据封装可能比较困难,因为 Python 中并没有私有和公共属性的区分。相反,Python 通过命名约定来表明某个类成员是公开的还是非公开的。
你可以利用 Python 闭包来实现更严格的数据封装。闭包能够为数据创建一个私有的作用域,阻止用户直接访问这些数据,从而有助于保持数据的完整性并防止意外修改。
例如,假设你有一个如下的 Stack 类:
class Stack:
def __init__(self):
self._items = []
def push(self, item):
self._items.append(item)
def pop(self):
return self._items.pop()
该 Stack 类将其数据存储在名为 ._items 的列表对象中,并实现常见的堆栈操作,例如入栈和出栈。 以下是如何使用此类:
>>> from stack_v1 import Stack
>>> stack = Stack()
>>> stack.push(1)
>>> stack.push(2)
>>> stack.push(3)
>>> stack.pop()
3
>>> stack._items
[1, 2]
你的类的基本功能已经实现了。但是,尽管 _items 属性被设计为非公开的,你依然可以通过点表示法来访问它的值,就像访问普通属性一样。这种做法使得数据封装变得困难,无法有效保护数据免受直接访问。
再次强调,闭包提供了一种实现更严格数据封装的方法。请看以下代码示例:
def Stack():
_items = []
def push(item):
_items.append(item)
def pop():
return _items.pop()
def closure():
pass
closure.push = push
closure.pop = pop
return closure
在这个示例中,你通过编写一个函数来创建一个闭包对象,而不是定义一个类。在这个函数内部,你定义了一个局部变量 _items,它将是你闭包对象的一部分。你将使用这个变量来保存栈的数据。接着,你定义了两个内部函数来执行栈的操作。
closure() 内部函数作为闭包的载体。在这个函数的基础上,你添加了 push() 和 pop() 函数。最终,你返回了最终的闭包对象。
你可以像使用 Stack 类一样使用 Stack() 函数。一个重要的不同点是,现在你无法访问 _items 属性:
>>> from stack_v2 import Stack
>>> stack = Stack()
>>> stack.push(1)
>>> stack.push(2)
>>> stack.push(3)
>>> stack.pop()
3
>>> stack._items
Traceback (most recent call last):
...
AttributeError: 'function' object has no attribute '_items'
Stack() 函数使你能够创建闭包,这些闭包的功能类似于 Stack 类的实例。但是,你无法直接访问 _items 属性,这增强了数据的封装性。
如果你非常讲究,可以使用一种高级技巧来访问 _items 属性的内容:
>>> stack.push.__closure__[0].cell_contents
[1, 2]
.__closure__ 属性会返回一个元组,其中包含了闭包中变量绑定的单元格。每个单元格对象都有一个名为 cell_contents 的属性,你可以通过它来获取单元格中的值。
即便有这种技巧可以访问闭包中的变量,但在 Python 代码中通常不会使用它。毕竟,如果你的目标是实现封装,为什么要去破坏它呢?
探索闭包的替代方案
到目前为止,你已经了解到 Python 闭包可以帮助解决一些问题。然而,理解闭包的内部工作原理可能比较困难,因此使用其他工具可能会让你的代码更容易理解。
你可以用一个实现了 .__call__() 特殊方法的类来替代闭包,这样的类可以创建出可调用的实例。所谓可调用实例,就是你可以像调用函数一样去调用的对象。
以 make_root_calculator() 工厂函数为例:
>>> def make_root_calculator(root_degree, precision=2):
... def root_calculator(number):
... return round(pow(number, 1 / root_degree), precision)
... return root_calculator
...
>>> square_root = make_root_calculator(2, 4)
>>> square_root(42)
6.4807
>>> cubic_root = make_root_calculator(3)
>>> cubic_root(42)
3.48
该函数返回在其扩展范围内保留 root_ Degree 和 precision 参数的闭包。您可以用以下类替换该工厂函数:
class RootCalculator:
def __init__(self, root_degree, precision=2):
self.root_degree = root_degree
self.precision = precision
def __call__(self, number):
return round(pow(number, 1 / self.root_degree), self.precision)
这个类接收与 make_root_calculator() 相同的两个参数,并将它们设置为实例属性。
通过实现 .__call__() 方法,你将你的类实例转变为可调用的对象,这意味着你可以像调用普通函数一样调用这些实例。以下展示了如何利用这个类来创建类似于根计算函数的对象:
>>> from roots import RootCalculator
>>> square_root = RootCalculator(2, 4)
>>> square_root(42)
6.4807
>>> cubic_root = RootCalculator(3)
>>> cubic_root(42)
3.48
>>> cubic_root.root_degree
3
如你所看到的,RootCalculator 类的功能与 make_root_calculator() 函数大致相同。此外,你现在还能够访问如 root_degree 这样的配置参数。
总结
现在你已经了解到,闭包通常是在 Python 中定义在另一个函数内部的函数对象。闭包会捕获它们封闭作用域内定义的对象,并将这些对象与内部函数对象结合起来,形成一个具有扩展作用域的可调用对象。
你可以在多种情况下使用闭包,尤其是当你需要在连续函数调用间保持状态或编写装饰器时。因此,掌握如何使用闭包对 Python 开发者来说是一项宝贵的技能。
在本教程中,你学习了:
- 闭包是什么以及它们在 Python 中的工作原理
- 实际中何时可以运用闭包
- 可调用实例如何替代闭包 掌握了这些知识后,你可以开始在你的代码中创建和使用 Python 闭包,特别是如果你对函数式编程工具感兴趣的话。
[1]Source: https://realpython.com/python-closure/
相关推荐
- 悠悠万事,吃饭为大(悠悠万事吃饭为大,什么意思)
-
新媒体编辑:杜岷赵蕾初审:程秀娟审核:汤小俊审签:周星...
- 高铁扒门事件升级版!婚宴上‘冲喜’老人团:我们抢的是社会资源
-
凌晨两点改方案时,突然收到婚庆团队发来的视频——胶东某酒店宴会厅,三个穿大红棉袄的中年妇女跟敢死队似的往前冲,眼瞅着就要扑到新娘的高额钻石项链上。要不是门口小伙及时阻拦,这婚礼造型团队熬了三个月的方案...
- 微服务架构实战:商家管理后台与sso设计,SSO客户端设计
-
SSO客户端设计下面通过模块merchant-security对SSO客户端安全认证部分的实现进行封装,以便各个接入SSO的客户端应用进行引用。安全认证的项目管理配置SSO客户端安全认证的项目管理使...
- 还在为 Spring Boot 配置类加载机制困惑?一文为你彻底解惑
-
在当今微服务架构盛行、项目复杂度不断攀升的开发环境下,SpringBoot作为Java后端开发的主流框架,无疑是我们手中的得力武器。然而,当我们在享受其自动配置带来的便捷时,是否曾被配置类加载...
- Seata源码—6.Seata AT模式的数据源代理二
-
大纲1.Seata的Resource资源接口源码2.Seata数据源连接池代理的实现源码3.Client向Server发起注册RM的源码4.Client向Server注册RM时的交互源码5.数据源连接...
- 30分钟了解K8S(30分钟了解微积分)
-
微服务演进方向o面向分布式设计(Distribution):容器、微服务、API驱动的开发;o面向配置设计(Configuration):一个镜像,多个环境配置;o面向韧性设计(Resista...
- SpringBoot条件化配置(@Conditional)全面解析与实战指南
-
一、条件化配置基础概念1.1什么是条件化配置条件化配置是Spring框架提供的一种基于特定条件来决定是否注册Bean或加载配置的机制。在SpringBoot中,这一机制通过@Conditional...
- 一招解决所有依赖冲突(克服依赖)
-
背景介绍最近遇到了这样一个问题,我们有一个jar包common-tool,作为基础工具包,被各个项目在引用。突然某一天发现日志很多报错。一看是NoSuchMethodError,意思是Dis...
- 你读过Mybatis的源码?说说它用到了几种设计模式
-
学习设计模式时,很多人都有类似的困扰——明明概念背得滚瓜烂熟,一到写代码就完全想不起来怎么用。就像学了一堆游泳技巧,却从没下过水实践,很难真正掌握。其实理解一个知识点,就像看立体模型,单角度观察总...
- golang对接阿里云私有Bucket上传图片、授权访问图片
-
1、为什么要设置私有bucket公共读写:互联网上任何用户都可以对该Bucket内的文件进行访问,并且向该Bucket写入数据。这有可能造成您数据的外泄以及费用激增,若被人恶意写入违法信息还可...
- spring中的资源的加载(spring加载原理)
-
最近在网上看到有人问@ContextConfiguration("classpath:/bean.xml")中除了classpath这种还有其他的写法么,看他的意思是想从本地文件...
- Android资源使用(android资源文件)
-
Android资源管理机制在Android的开发中,需要使用到各式各样的资源,这些资源往往是一些静态资源,比如位图,颜色,布局定义,用户界面使用到的字符串,动画等。这些资源统统放在项目的res/独立子...
- 如何深度理解mybatis?(如何深度理解康乐服务质量管理的5个维度)
-
深度自定义mybatis回顾mybatis的操作的核心步骤编写核心类SqlSessionFacotryBuild进行解析配置文件深度分析解析SqlSessionFacotryBuild干的核心工作编写...
- @Autowired与@Resource原理知识点详解
-
springIOCAOP的不多做赘述了,说下IOC:SpringIOC解决的是对象管理和对象依赖的问题,IOC容器可以理解为一个对象工厂,我们都把该对象交给工厂,工厂管理这些对象的创建以及依赖关系...
- java的redis连接工具篇(java redis client)
-
在Java里,有不少用于连接Redis的工具,下面为你介绍一些主流的工具及其特点:JedisJedis是Redis官方推荐的Java连接工具,它提供了全面的Redis命令支持,且...
- 一周热门
- 最近发表
- 标签列表
-
- mybatiscollection (79)
- mqtt服务器 (88)
- keyerror (78)
- c#map (65)
- resize函数 (64)
- xftp6 (83)
- bt搜索 (75)
- c#var (76)
- mybatis大于等于 (64)
- xcode-select (66)
- mysql授权 (74)
- 下载测试 (70)
- linuxlink (65)
- pythonwget (67)
- androidinclude (65)
- logstashinput (65)
- hadoop端口 (65)
- vue阻止冒泡 (67)
- oracle时间戳转换日期 (64)
- jquery跨域 (68)
- php写入文件 (73)
- kafkatools (66)
- mysql导出数据库 (66)
- jquery鼠标移入移出 (71)
- 取小数点后两位的函数 (73)