百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

嵌入式开发输出调试信息的几种方法(常规法及非常规法)

bigegpt 2024-12-14 10:00 7 浏览


《论语》有云:“工欲善其事,必先利其器”。输出调试信息是软件开发中必不可少的调试利器,在出现bug时如果没有调试信息将会是一件令人头痛的事。本文主要介绍在嵌入式开发中用来输出log的方法,这些方法都是在实际开发过程中使用过的。

嵌入式开发的一个特点是很多时候没有操作系统,或者没有文件系统,常规的打印log到文件的方法基本不适用。最常用的是通过串口输出uart log,例如51单片机,只要实现串口驱动,然后通过串口输出就可以了。

这种方法实现简单,大部分嵌入式芯片都有串口功能。但是这样简单的功能有时候却不是那么好用,比如:

(1) 一款新拿到的芯片,没有串口驱动时如何打印log

(2) 某些应用下对时序要求比较高,串口输出log占用时间太长怎么办?比如usb枚举。

(3) 某些bug正常运行时会出现,当打开串口log时又不再复现怎么办

(4) 一些封装中没有串口,或者串口已经被用作其他用途,要如何输出log 下面来讨论这些问题:

1、输出log信息到SRAM

准确来说这里并不是输出log,而是以一种方式不使用串口就可以看到log。在芯片开发阶段都可以连接仿真器调试,可以使用打断点的方法调试,但是有些操作如果不能被打断就没法使用断点调试了。

这时候可以考虑将log打印到SRAM中,整个操作结束后再通过仿真器查看SRAM中的log buffer,这样就实现了间接的log输出。

本文使用的测试平台是stm32f407 discovery,基于usb host实验代码,对于其他嵌入式平台原理也是通用的。首先定义一个结构体用于打印log,如下:

typedef struct 
{
    volatile u8     type;
    u8*             buffer;             /* log buffer指针*/
    volatile u32    write_idx;          /* log写入位置*/
    volatile u32    read_idx;           /* log 读取位置*/
}log_dev;

定义一段SRAM空间作为log buffer:

static u8 log_buffer[LOG_MAX_LEN];

log buffer是环形缓冲区,在小的buffer就可以无限打印log,缺点也很明显,如果log没有及时输出就会被新的覆盖。Buffer大小根据SRAM大小分配,这里使用1kB。为了方便输出参数,使用printf函数来格式化输出,需要做如下配置(Keil):

并包含头文件#include <stdio.h>, 在代码中实现函数fputc()

//redirect fputc
int fputc(int ch, FILE *f)
{
    print_ch((u8)ch);
    return ch;
}

写入数据到Sram:

/*write log to bufffer or I/O*/
void print_ch(u8 ch)
{
    log_dev_ptr->buffer[log_dev_ptr->write_idx++] = ch;
    if(log_dev_ptr->write_idx >= LOG_MAX_LEN){
        log_dev_ptr->write_idx = 0;
    }
}

为了方便控制log打印格式,在头文件中再添加自定义的打印函数

#ifdef DEBUG_LOG_EN
#define DEBUG(...)      printf("usb_printer:"__VA_ARGS__)
#else
#define DEBUG(...)
#endif

在需要打印log的地方直接调用DEBUG()即可,最终效果如下,从Memory窗口可以看到打印的log:

2、通过SWO输出log

通过打印log到SRAM的方式可以看到log,但是数据量多的时候可能来不及查看就被覆盖了。为了解决这个问题,可以使用St-link的SWO输出log,这样就不用担心log被覆盖。查看原理图f407 discovery的SWO已经连接了,否则需要自己飞线连接:

在log结构体中添加SWO的操作函数集:

typedef struct
{
    u8 (*init)(void* arg);
    u8 (*print)(u8 ch);
    u8 (*print_dma)(u8* buffer, u32 len);
}log_func;

typedef struct 
{
    volatile u8     type;
    u8*             buffer;
    volatile u32    write_idx;
    volatile u32    read_idx;
    //SWO
    log_func*       swo_log_func;
}log_dev;

SWO只需要print操作函数,实现如下:

u8 swo_print_ch(u8 ch)
{
    ITM_SendChar(ch);
    return 0;
}

使用SWO输出log同样先输出到log buffer,然后在系统空闲时再输出,当然也可以直接输出。log延迟输出会影响log的实时性,而直接输出会影响到对时间敏感的代码运行,所以如何取舍取决于需要输出log的情形。

在while循环中调用output_ch()函数,就可以实现在系统空闲时输出log。

/*output log buffer to I/O*/
void output_ch(void)
{   
    u8 ch;
    volatile u32 tmp_write,tmp_read;
    tmp_write = log_dev_ptr->write_idx;
    tmp_read = log_dev_ptr->read_idx;

    if(tmp_write != tmp_read)
    {
        ch = log_dev_ptr->buffer[tmp_read++];
        //swo
        if(log_dev_ptr->swo_log_func)
            log_dev_ptr->swo_log_func->print(ch);
        if(tmp_read >= LOG_MAX_LEN)
        {
            log_dev_ptr->read_idx = 0;
        }
        else
        {
            log_dev_ptr->read_idx = tmp_read;
        }
    }
}

2.1 通过IDE输出

使用IDE中SWO输出功能需要做如下配置(Keil):

在窗口可以看到输出的log:

2.2 通过STM32 ST-LINK Utility输出

使用STM32 ST-LINK Utility不需要做特别的设置,直接打开ST-LINK菜单下的Printf via SWO viewer,然后按start:

3、通过串口输出log

以上都是在串口log暂时无法使用,或者只是临时用一下的方法,而适合长期使用的还是需要通过串口输出log,毕竟大部分时候没法连接仿真器。添加串口输出log只需要添加串口的操作函数集即可:

typedef struct 
{
    volatile u8     type;
    u8*             buffer;
    volatile u32    write_idx;
    volatile u32    read_idx;
    volatile u32    dma_read_idx;
    //uart
    log_func*       uart_log_func;
    //SWO
    log_func*       swo_log_func;
}log_dev;

实现串口驱动函数:

log_func uart_log_func = 
{
    uart_log_init,
    uart_print_ch,
    0,
};

添加串口输出log与通过SWO过程类似,不再多叙述。而下面要讨论的问题是,串口的速率较低,输出数据需要较长时间,严重影响系统运行。

虽然可以通过先打印到SRAM再延时输出的办法来减轻影响,但是如果系统中断频繁,或者需要做耗时运算,则可能会丢失log。要解决这个问题,就是要解决CPU与输出数据到串口同时进行的问题,嵌入式工程师立马可以想到DMA正是好的解决途径。

使用DMA搬运log数据到串口输出,同时又不影响CPU运行,这样就可以解决输出串口log耗时影响系统的问题。串口及DMA初始化函数如下:

u8 uart_log_init(void* arg)
{
    DMA_InitTypeDef DMA_InitStructure;
    u32* bound = (u32*)arg;
    //GPIO端口设置
    GPIO_InitTypeDef GPIO_InitStructure;
    USART_InitTypeDef USART_InitStructure;

    RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA,ENABLE); //使能GPIOA时钟
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2,ENABLE);//使能USART2时钟
    //串口2对应引脚复用映射
    GPIO_PinAFConfig(GPIOA,GPIO_PinSource2,GPIO_AF_USART2);
    //USART2端口配置
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;//复用功能
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;   //速度50MHz
    GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; //推挽复用输出
    GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; //上拉
    GPIO_Init(GPIOA,&GPIO_InitStructure);
    //USART2初始化设置
    USART_InitStructure.USART_BaudRate = *bound;//波特率设置
    USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为8位数据格式
    USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位
    USART_InitStructure.USART_Parity = USART_Parity_No;//无奇偶校验位
    USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件数据流控制
    USART_InitStructure.USART_Mode = USART_Mode_Tx; //收发模式
    USART_Init(USART2, &USART_InitStructure); //初始化串口1
    #ifdef LOG_UART_DMA_EN  
    USART_DMACmd(USART2,USART_DMAReq_Tx,ENABLE);
    #endif  
    USART_Cmd(USART2, ENABLE);  //使能串口1 
    USART_ClearFlag(USART2, USART_FLAG_TC);
    while (USART_GetFlagStatus(USART2, USART_FLAG_TC) == RESET);
    #ifdef LOG_UART_DMA_EN
    RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA1, ENABLE);
    //Config DMA channel, uart2 TX usb DMA1 Stream6 Channel
    DMA_DeInit(DMA1_Stream6);
    DMA_InitStructure.DMA_Channel = DMA_Channel_4;
    DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)(&USART2->DR);
    DMA_InitStructure.DMA_DIR = DMA_DIR_MemoryToPeripheral;
    DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
    DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
    DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
    DMA_InitStructure.DMA_MemoryDataSize = DMA_PeripheralDataSize_Byte;
    DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
    DMA_InitStructure.DMA_Priority = DMA_Priority_High;
    DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable; 
    DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single;
    DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;
    DMA_Init(DMA1_Stream6, &DMA_InitStructure);
    RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA1, ENABLE);
    #endif
    return 0;
}

DMA输出到串口的函数如下:

u8 uart_print_dma(u8* buffer, u32 len)
{
    if((DMA1_Stream6->CR & DMA_SxCR_EN) != RESET)
    {
        //dma not ready
        return 1;
    }
    if(DMA_GetFlagStatus(DMA1_Stream6,DMA_IT_TCIF6) != RESET)
    {
        DMA_ClearFlag(DMA1_Stream6,DMA_FLAG_TCIF6);
        DMA_Cmd(DMA1_Stream6,DISABLE);
    }
    DMA_SetCurrDataCounter(DMA1_Stream6,len);
    DMA_MemoryTargetConfig(DMA1_Stream6, (u32)buffer, DMA_Memory_0);
    DMA_Cmd(DMA1_Stream6,ENABLE);
    return 0;
}

这里为了方便直接使用了查询DMA状态寄存器,有需要可以修改为DMA中断方式,查Datasheet可以找到串口2使用DMA1 channel4的stream6:

最后在PC端串口助手可以看到log输出:

使用DMA搬运log buffer中数据到串口,同时CPU可以处理其他事情,这种方式对系统影响最小,并且输出log及时,是实际使用中用的最多的方式。并且不仅可以用串口,其他可以用DMA操作的接口(如SPI、USB)都可以使用这种方法来打印log。

4、使用IO模拟串口输出log

最后要讨论的是在一些封装中没有串口,或者串口已经被用作其他用途时如何输出log,这时可以找一个空闲的普通IO,模拟UART协议输出log到上位机的串口工具。常用的UART协议如下:

只要在确定的时间在IO上输出高低电平就可以模拟出波形,这个确定的时间就是串口波特率。为了得到精确延时,这里使用TIM4定时器产生1us的延时。注意:定时器不能重复用,在测试工程中TIM2、3都被用了,如果重复用就错乱了。初始化函数如下:

u8 simu_log_init(void* arg)
{
    TIM_TimeBaseInitTypeDef TIM_InitStructure;  
    u32* bound = (u32*)arg;
    //GPIO端口设置
    GPIO_InitTypeDef GPIO_InitStructure;
    RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA,ENABLE); //使能GPIOA时钟
    GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2;
    GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
    GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;   //速度50MHz
    GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; //推挽复用输出
    GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; //上拉
    GPIO_Init(GPIOA,&GPIO_InitStructure);
    GPIO_SetBits(GPIOA, GPIO_Pin_2);
    //Config TIM
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4,ENABLE); //使能TIM4时钟
    TIM_DeInit(TIM4);
    TIM_InitStructure.TIM_Prescaler = 1;        //2分频
    TIM_InitStructure.TIM_CounterMode = TIM_CounterMode_Up;
    TIM_InitStructure.TIM_Period = 41;          //1us timer
    TIM_InitStructure.TIM_ClockDivision = TIM_CKD_DIV1;
    TIM_TimeBaseInit(TIM4, &TIM_InitStructure);
    TIM_ClearFlag(TIM4, TIM_FLAG_Update);
    baud_delay = 1000000/(*bound);          //根据波特率计算每个bit延时
    return 0;
}

使用定时器的delay函数为:

void simu_delay(u32 us)
{
    volatile u32 tmp_us = us;
    TIM_SetCounter(TIM4, 0);
    TIM_Cmd(TIM4, ENABLE);
    while(tmp_us--)
    {
        while(TIM_GetFlagStatus(TIM4, TIM_FLAG_Update) == RESET);
        TIM_ClearFlag(TIM4, TIM_FLAG_Update);
    }   
    TIM_Cmd(TIM4, DISABLE);
}

最后是模拟输出函数,注意:输出前必须要关闭中断,一个byte输出完再打开,否则会出现乱码:

u8 simu_print_ch(u8 ch)
{
    volatile u8 i=8;
    __asm("cpsid i");
    //start bit
    GPIO_ResetBits(GPIOA, GPIO_Pin_2);
    simu_delay(baud_delay);
    while(i--)
    {
        if(ch & 0x01)
        GPIO_SetBits(GPIOA, GPIO_Pin_2);
        else
        GPIO_ResetBits(GPIOA, GPIO_Pin_2);
        ch >>= 1;
        simu_delay(baud_delay);
    }
    //stop bit
    GPIO_SetBits(GPIOA, GPIO_Pin_2);
    simu_delay(baud_delay);
    simu_delay(baud_delay);
    __asm("cpsie i");
    return 0;
}

使用IO模拟可以达到与真实串口类似的效果,并且只需要一个普通IO,在小封装芯片上比较使用。

总结

介绍了几种开发中使用过的打印调试信息的方法,方法总是死的,关键在于能灵活使用;通过打印有效的调试信息,可以帮助解决开发及后期维护中遇到的问题,少走弯路。

免责声明:本文系网络转载,版权归原作者所有。如涉及作品版权问题,请与我联系,我将及时删除内容。

相关推荐

了解Linux目录,那你就了解了一半的Linux系统

大到公司或者社群再小到个人要利用Linux来开发产品的人实在是多如牛毛,每个人都用自己的标准来配置文件或者设置目录,那么未来的Linux则就是一团乱麻,也对管理造成许多麻烦。后来,就有所谓的FHS(F...

Linux命令,这些操作要注意!(linux命令?)

刚玩Linux的人总觉得自己在演黑客电影,直到手滑输错命令把公司服务器删库,这才发现命令行根本不是随便乱用的,而是“生死簿”。今天直接上干货,告诉你哪些命令用好了封神!喜欢的一键三连,谢谢观众老爷!!...

Linux 命令速查手册:这 30 个高频指令,拯救 90% 的运维小白!

在Linux系统的世界里,命令行是强大的武器。对于运维小白而言,掌握一些高频使用的Linux命令,能极大提升工作效率,轻松应对各种系统管理任务。今天,就为大家奉上精心整理的30个Linu...

linux必学的60个命令(linux必学的20个命令)

以下是Linux必学的20个基础命令:1.cd:切换目录2.ls:列出文件和目录3.mkdir:创建目录4.rm:删除文件或目录5.cp:复制文件或目录6.mv:移动/重命名文件或目录7....

提高工作效率的--Linux常用命令,能够决解95%以上的问题

点击上方关注,第一时间接受干货转发,点赞,收藏,不如一次关注评论区第一条注意查看回复:Linux命令获取linux常用命令大全pdf+Linux命令行大全pdf为什么要学习Linux命令?1、因为Li...

15 个实用 Linux 命令(linux命令用法及举例)

Linux命令行是系统管理员、开发者和技术爱好者的强大工具。掌握实用命令不仅能提高效率,还能解锁Linux系统的无限潜力,本文将深入介绍15个实用Linux命令。ls-列出目录内容l...

Linux 常用命令集合(linux常用命令全集)

系统信息arch显示机器的处理器架构(1)uname-m显示机器的处理器架构(2)uname-r显示正在使用的内核版本dmidecode-q显示硬件系统部件-(SMBIOS/DM...

Linux的常用命令就是记不住,怎么办?

1.帮助命令1.1help命令#语法格式:命令--help#作用:查看某个命令的帮助信息#示例:#ls--help查看ls命令的帮助信息#netst...

Linux常用文件操作命令(linux常用文件操作命令有哪些)

ls命令在Linux维护工作中,经常使用ls这个命令,这是最基本的命令,来写几条常用的ls命令。先来查看一下使用的ls版本#ls--versionls(GNUcoreutils)8.4...

Linux 常用命令(linux常用命令)

日志排查类操作命令查看日志cat/var/log/messages、tail-fxxx.log搜索关键词grep"error"xxx.log多条件过滤`grep-E&#...

简单粗暴收藏版:Linux常用命令大汇总

号主:老杨丨11年资深网络工程师,更多网工提升干货,请关注公众号:网络工程师俱乐部下午好,我的网工朋友在Linux系统中,命令行界面(CLI)是管理员和开发人员最常用的工具之一。通过命令行,用户可...

「Linux」linux常用基本命令(linux常用基本命令和用法)

Linux中许多常用命令是必须掌握的,这里将我学linux入门时学的一些常用的基本命令分享给大家一下,希望可以帮助你们。总结送免费学习资料(包含视频、技术学习路线图谱、文档等)1、显示日期的指令:d...

Linux的常用命令就是记不住,怎么办?于是推出了这套教程

1.帮助命令1.1help命令#语法格式:命令--help#作用:查看某个命令的帮助信息#示例:#ls--help查看ls命令的帮助信息#netst...

Linux的30个常用命令汇总,运维大神必掌握技能!

以下是Linux系统中最常用的30个命令,精简版覆盖日常操作核心需求,适合快速掌握:一、文件/目录操作1.`ls`-列出目录内容`ls-l`(详细信息)|`ls-a`(显示隐藏文件)...

Linux/Unix 系统中非常常用的命令

Linux/Unix系统中非常常用的命令,它们是进行文件操作、文本处理、权限管理等任务的基础。下面是对这些命令的简要说明:**文件操作类:*****`ls`(list):**列出目录内容,显...