Python+OpenCV人脸识别(基于LBPH+防照片识别+警报)
bigegpt 2024-12-15 11:25 4 浏览
- 目录
废话
1.环境配置(jupyter notebook python 3.6.5)
2.训练集准备
3.代码思路(艹图)
4.人脸识别源码
5.参考文章
6.可能遇到的问题
废话
嗯,开局说点废话,之前用stm32和esp8266改装了下宿舍门,但终究觉得没人脸识别来得舒服,所以就有了这篇文章
1.环境配置(jupyter notebook python 3.6.5)
我这里用的是python3.6,如果你想搭建一个3.6的环境又不想影响原有的,可以用小黑窗(Anaconda Prompt)搭建一个虚拟环境(虚拟环境是一个独立的空间不会影响外界,也不会受外界影响,适合应对不同版本python的需求)
如何搭建虚拟环境可以看看这篇文,简单粗暴
当你搭建好虚拟环境后,第三方库的安装也要安在虚拟环境里,那么如何切换到虚拟环境里呢
打开小黑窗 activate 虚拟环境名字就可以激活了效果如下:
看到小括号就说明已经切换到虚拟环境里了
然后就可以安装所需的第三方库了,eg.Opencv,scipy,request,dlib,安装方法如下:
1)OpenCV
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-contrib-python==3.4.2.16
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-python==3.4.2.16
2)scipy
pip install scipy
3) request
pip install request
4) dlib
dlib库的安装比较麻烦,你得先找到对应版本,因为不同python版本对应不同dlib
如果你跟我一样是3.6,那装19.7就行
缺版本或找不到对应版本可以留言
2.训练集准备
这个训练集捏,是借助recognizer.train得到的.yml文件,所以精度没特别高,但是拿来玩玩门锁 还是够用,追求精度可以走深度学习
代码如下:
1)第一步准备照片(即你的人脸像),以“序号.名称”命名,例如“1.xx"这是为了方便切片和保存(即我们可以通过切片将每张照片的脸部特征,序号,名称一一对应)记得你照片的存放路径
2)第二步准备人脸数据集haarcascade_frontalface_alt2.xml,这个是opencv自带的用于检测人脸(注意是检测人脸不是识别人脸)这种做法我觉得有点像RIO ,就是我们在一张图片中匹配人像特征不是从角落开始,而是定位人脸,然后规划一个区域,在区域内进行匹配,这样节省很多时间
3)第三步,跑代码就完事了,然后你会在你指定的文件夹里面找到yml文件,这就是你的训练集
import osimport sysfrom PIL import Imageimport numpy as npimport cv2
def getImageAndLabels(path): #建两个空列表后续存储数据 facesSamples=[] ids=[] imagePaths=[os.path.join(path,f) for f in os.listdir(path)] #检测人脸 face_detector = cv2.CascadeClassifier('E:\jupyter_notebook\practice\haarcascades\haarcascade_frontalface_alt2.xml') #打印数组imagePaths print('路径:',imagePaths) #遍历列表中的图片 for imagePath in imagePaths: #打开图片,灰度 PIL_img=Image.open(imagePath).convert('L') #此时获取的是整张图片的数组 img_numpy=np.array(PIL_img,'uint8') #获取图片人脸特征,相当于rio faces = face_detector.detectMultiScale(img_numpy) #将文件名前的名字转化为ID并记录下来 str_id = os.path.split(imagePath)[1].split('.')[0] id = int(str_id) #id = os.path.split(imagePath)[1].split('.')[0] #预防检测到无面容照片 for x,y,w,h in faces: #把ID写进ids列表中 ids.append(id) #把所画的方框写进facesSamples列表中 facesSamples.append(img_numpy[y:y+h,x:x+w]) #打印脸部特征和id print('id:', id) print('fs:', facesSamples) return facesSamples,ids
if __name__ == '__main__': #图片路径 path='E:/face_dormitory/train' #获取图像数组和id标签数组和姓名 faces,ids=getImageAndLabels(path) #获取训练对象 recognizer=cv2.face.LBPHFaceRecognizer_create() recognizer.train(faces,np.array(ids)) #保存文件 recognizer.write('E:/face_dormitory/opencv/trainer/trainer_xx.yml')
3.代码思路(艹图)
4.人脸识别源码
1)引入库
import cv2import numpy as npimport osimport urllibimport urllib.requestimport hashlibfrom scipy.spatial import distance as distfrom collections import OrderedDictimport argparseimport timeimport dlib
2)加载训练集(这里shape_predictor_68_face_landmarks是用于眨眼检测的)
#加载训练数据集文件recogizer=cv2.face.LBPHFaceRecognizer_create()recogizer.read('E:/face_dormitory/opencv/trainer/trainer_xx.yml')names=[] #建个空id列表warningtime = 0predictor = dlib.shape_predictor('E:/face_dormitory/opencv/shape_predictor_68_face_landmarks.dat')
3)邮件函数(即识别出陌生人或可疑人用于发送抓拍照片的)
import smtplibfrom PIL import Imageimport email # 文件名不可以和引入的库同名from email.mime.image import MIMEImage # 图片类型邮件from email.mime.text import MIMEText # MIME 多用于邮件扩充协议from email.mime.multipart import MIMEMultipart # 创建附件类型 HOST = 'smtp.qq.com' # 调用的邮箱借借口SUBJECT = 'Warning!!!' # 设置邮件标题FROM = '1xxxxxxxxx@qq.com' # 发件人的邮箱需先设置开启smtp协议#TO = '1xxxxxxxxxxx@qq.com' # 设置收件人的邮箱(可以一次发给多个人,用逗号分隔)TO = 'xxxxxxxxxx@qq.com' # 设置收件人的邮箱(可以一次发给多个人,用逗号分隔)message = MIMEMultipart('related') # 邮件信息,内容为空 #相当于信封##related表示使用内嵌资源的形式,将邮件发送给对方 def sendmail(HOST, SUBJECT,FROM,TO,message): # ===========发送信息内容============= message_html = MIMEText('<h1 style="color:red;font-size:100px">Warning!!!</h1><img src="cid:small">', 'html', 'utf-8') message.attach(message_html) # ===========发送图片-============= message_image0 = MIMEText(open('E:/face_dormitory/unidentified/0.jpg', 'rb').read(), 'base64', 'utf-8') message_image0['Content-disposition'] = 'attachment;filename="Suspicious people.jpg"'# 设置图片在附件当中的名字 message_image1 = MIMEText(open('E:/face_dormitory/unidentified/1.jpg', 'rb').read(), 'base64', 'utf-8') message_image1['Content-disposition'] = 'attachment;filename="Suspicious people.jpg"'# 设置图片在附件当中的名字 message.attach(message_image0)# 添加图片文件到邮件-附件中去 message.attach(message_image1)# 添加图片文件到邮件-附件中去 ''' path='E:/face_dormitory/unidentified' imagePaths=[os.path.join(path,f) for f in os.listdir(path)] for imagePath in imagePaths: PIL_img=Image.open(imagePath,'utf-8') PIL_img['Content-disposition'] = 'attachment;filename="Suspicious people.jpg"' message.attach(PIL_img) ''' # ===========删除缓冲图片-============= #os.remove('E:/face_dormitory/unidentified/0.jpg') #os.remove('E:/face_dormitory/unidentified/1.jpg') # ===========发送excel-附件============= #message_xlsx = MIMEText(open('email_demo.xlsx', 'rb').read(), 'base64', 'utf-8')# 将xlsx文件作为内容发送到对方的邮箱读取excel,rb形式读取,对于MIMEText()来说默认的编码形式是base64 对于二进制文件来说没有设置base64,会出现乱码 #message_xlsx['Content-Disposition'] = 'attachment;filename="email_demo_change.xlsx"'# 设置文件在附件当中的名字 #message.attach(message_xlsx)# 添加excel文件到邮件-附件中去 # ===========配置相关-============= message['From'] = FROM # 设置邮件发件人 message['TO'] = TO # 设置邮件收件人 message['Subject'] = SUBJECT # 设置邮件标题 email_client = smtplib.SMTP_SSL()# 获取传输协议 email_client.connect(HOST, '465')# 设置发送域名,端口465 result = email_client.login(FROM, 'xxxxxxx') # qq授权码 print('登录结果', result) # ===========操作============= email_client.sendmail(from_addr=FROM, to_addrs=TO.split(','), msg=message.as_string()) #发送邮件指令 email_client.close()# 关闭邮件发送客户端
写邮件函数我是借鉴这个大佬的,站在巨人肩膀上嘛,总不能什么都靠自己来
4)防照片检测(即眨眼检测)这个也可以用于疲劳检测
详见:i·bug - resources - Facial point annotations
FACIAL_LANDMARKS_68_IDXS = OrderedDict([ ("mouth", (48, 68)), ("right_eyebrow", (17, 22)), ("left_eyebrow", (22, 27)), ("right_eye", (36, 42)), ("left_eye", (42, 48)), ("nose", (27, 36)), ("jaw", (0, 17))])
def eye_aspect_ratio(eye): # 计算距离,竖直的 A = dist.euclidean(eye[1], eye[5]) B = dist.euclidean(eye[2], eye[4]) # 计算距离,水平的 C = dist.euclidean(eye[0], eye[3]) # ear值 ear = (A + B) / (2.0 * C) return ear
def shape_to_np(shape, dtype="int"): # 创建68*2 coords = np.zeros((shape.num_parts, 2), dtype=dtype) # 遍历每一个关键点 # 得到坐标 for i in range(0, shape.num_parts): coords[i] = (shape.part(i).x, shape.part(i).y) return coords
def pervent_to_photo(): # 设置判断参数 EYE_AR_THRESH = 0.3 EYE_AR_CONSEC_FRAMES = 3 # 初始化计数器 COUNTER = 0 TOTAL = 0 # 检测与定位工具 print("loading facial landmark predictor...") detector = dlib.get_frontal_face_detector() #predictor = dlib.shape_predictor('E:/face_dormitory/opencv/shape_predictor_68_face_landmarks.dat') # 分别取两个眼睛区域 (lStart, lEnd) = FACIAL_LANDMARKS_68_IDXS["left_eye"] (rStart, rEnd) = FACIAL_LANDMARKS_68_IDXS["right_eye"] # 读取视频 print("starting video stream thread...") vs = cv2.VideoCapture(0) time.sleep(1.0) # 遍历每一帧 while True: # 预处理 frame = vs.read()[1] if frame is None: break (h, w) = frame.shape[:2] width=1200 r = width / float(w) dim = (width, int(h * r)) frame = cv2.resize(frame, dim, interpolation=cv2.INTER_AREA) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 检测人脸 rects = detector(gray, 0) # 遍历每一个检测到的人脸 for rect in rects: # 获取坐标 shape = predictor(gray, rect) shape = shape_to_np(shape) # 分别计算ear值 leftEye = shape[lStart:lEnd] rightEye = shape[rStart:rEnd] leftEAR = eye_aspect_ratio(leftEye) rightEAR = eye_aspect_ratio(rightEye) # 算一个平均的 ear = (leftEAR + rightEAR) / 2.0 # 绘制眼睛区域 leftEyeHull = cv2.convexHull(leftEye) rightEyeHull = cv2.convexHull(rightEye) cv2.drawContours(frame, [leftEyeHull], -1, (0, 255, 0), 1) cv2.drawContours(frame, [rightEyeHull], -1, (0, 255, 0), 1) # 检查是否满足阈值 if ear < EYE_AR_THRESH: COUNTER += 1 else: # 如果连续几帧都是闭眼的,总数算一次 if COUNTER >= EYE_AR_CONSEC_FRAMES: TOTAL += 1 # 重置 COUNTER = 0 # 显示 cv2.putText(frame, "Blinks: {}".format(TOTAL), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) cv2.putText(frame, "EAR: {:.2f}".format(ear), (300, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2) cv2.imshow("Frame", frame) #眨眼两次则判断不是照片 if TOTAL >= 2: cv2.imwrite(r"E:/face_dormitory/unidentified/"+"1.jpg",frame) #抓拍 break #空格退出 if ord(' ') == cv2.waitKey(10): break #vs.release() cv2.destroyAllWindows()
5)人脸检测函数
#准备识别的图片def face_detect_demo(img): gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)#转换为灰度 face_detector=cv2.CascadeClassifier('E:\jupyter_notebook\practice\haarcascades\haarcascade_frontalface_alt2.xml') #加入数据集 face=face_detector.detectMultiScale(gray,1.1,5,cv2.CASCADE_SCALE_IMAGE,(100,100),(300,300)) #范围在100*100~300*300判断为脸 for x,y,w,h in face: cv2.rectangle(img,(x,y),(x+w,y+h),color=(0,0,255),thickness=2) cv2.circle(img,center=(x+w//2,y+h//2),radius=w//2,color=(0,255,0),thickness=1) # 人脸识别 ids, confidence = recogizer.predict(gray[y:y + h, x:x + w]) #置信评分 confidence 越大越不可信 if confidence > 50: global warningtime global num warningtime += 1 if warningtime > 100: #cv2.imwrite(r"E:/face_dormitory/unidentified/"+str(num)+".jpg",frame) #抓拍 cv2.imwrite(r"E:/face_dormitory/unidentified/"+"0.jpg",frame) #抓拍 time.sleep(0.1) sendmail(HOST=HOST, SUBJECT=SUBJECT,FROM=FROM,TO=TO,message=message) print('ddddddddddd') #num += 1 warningtime = 0 cv2.putText(img, 'unidentified', (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1) else: cv2.putText(img,str(names[ids-1]), (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 255, 0), 1) cv2.imshow('result',img)
#取名函数,切片取名,即照片名为1.cj.jpg,取名后就为cjdef name(): #相册路径 path = 'E:/face_dormitory/train' #循环读图 imagePaths=[os.path.join(path,f) for f in os.listdir(path)] for imagePath in imagePaths: #切名字 name = str(os.path.split(imagePath)[1].split('.',2)[1]) names.append(name)
6)主函数
#防照片识别pervent_to_photo() #打开摄像头,0是本地默认,1是外用,我把本地关了把外用开着所以直接0cap=cv2.VideoCapture(0)name()while True: flag,frame=cap.read() if not flag: break face_detect_demo(frame) #空格退出 if ord(' ') == cv2.waitKey(10): breakcv2.destroyAllWindows()cap.release() ?
5.参考文章
感谢大佬1
感谢大佬2
感谢大佬3
6.可能遇到的问题
1.如果你搭建了虚拟环境且里面安装了opencv,但是再引用的时候报错没装库,看看有没有将虚拟环境导入kernel
2.如果你发现我的逻辑有问题,相信你自己,错的肯定是我,请务必怼我,毕竟有探讨才有完善,我也是个小菜鸡
3.如果出现”No module named XXX“,说明安装差库了,请跑到虚拟环境里去安装,虚拟环境是独立的,你之前安装了什么都跟虚拟环境无关
相关推荐
- 了解Linux目录,那你就了解了一半的Linux系统
-
大到公司或者社群再小到个人要利用Linux来开发产品的人实在是多如牛毛,每个人都用自己的标准来配置文件或者设置目录,那么未来的Linux则就是一团乱麻,也对管理造成许多麻烦。后来,就有所谓的FHS(F...
- Linux命令,这些操作要注意!(linux命令?)
-
刚玩Linux的人总觉得自己在演黑客电影,直到手滑输错命令把公司服务器删库,这才发现命令行根本不是随便乱用的,而是“生死簿”。今天直接上干货,告诉你哪些命令用好了封神!喜欢的一键三连,谢谢观众老爷!!...
- Linux 命令速查手册:这 30 个高频指令,拯救 90% 的运维小白!
-
在Linux系统的世界里,命令行是强大的武器。对于运维小白而言,掌握一些高频使用的Linux命令,能极大提升工作效率,轻松应对各种系统管理任务。今天,就为大家奉上精心整理的30个Linu...
- linux必学的60个命令(linux必学的20个命令)
-
以下是Linux必学的20个基础命令:1.cd:切换目录2.ls:列出文件和目录3.mkdir:创建目录4.rm:删除文件或目录5.cp:复制文件或目录6.mv:移动/重命名文件或目录7....
- 提高工作效率的--Linux常用命令,能够决解95%以上的问题
-
点击上方关注,第一时间接受干货转发,点赞,收藏,不如一次关注评论区第一条注意查看回复:Linux命令获取linux常用命令大全pdf+Linux命令行大全pdf为什么要学习Linux命令?1、因为Li...
- 15 个实用 Linux 命令(linux命令用法及举例)
-
Linux命令行是系统管理员、开发者和技术爱好者的强大工具。掌握实用命令不仅能提高效率,还能解锁Linux系统的无限潜力,本文将深入介绍15个实用Linux命令。ls-列出目录内容l...
- Linux 常用命令集合(linux常用命令全集)
-
系统信息arch显示机器的处理器架构(1)uname-m显示机器的处理器架构(2)uname-r显示正在使用的内核版本dmidecode-q显示硬件系统部件-(SMBIOS/DM...
- Linux的常用命令就是记不住,怎么办?
-
1.帮助命令1.1help命令#语法格式:命令--help#作用:查看某个命令的帮助信息#示例:#ls--help查看ls命令的帮助信息#netst...
- Linux常用文件操作命令(linux常用文件操作命令有哪些)
-
ls命令在Linux维护工作中,经常使用ls这个命令,这是最基本的命令,来写几条常用的ls命令。先来查看一下使用的ls版本#ls--versionls(GNUcoreutils)8.4...
- Linux 常用命令(linux常用命令)
-
日志排查类操作命令查看日志cat/var/log/messages、tail-fxxx.log搜索关键词grep"error"xxx.log多条件过滤`grep-E...
- 简单粗暴收藏版:Linux常用命令大汇总
-
号主:老杨丨11年资深网络工程师,更多网工提升干货,请关注公众号:网络工程师俱乐部下午好,我的网工朋友在Linux系统中,命令行界面(CLI)是管理员和开发人员最常用的工具之一。通过命令行,用户可...
- 「Linux」linux常用基本命令(linux常用基本命令和用法)
-
Linux中许多常用命令是必须掌握的,这里将我学linux入门时学的一些常用的基本命令分享给大家一下,希望可以帮助你们。总结送免费学习资料(包含视频、技术学习路线图谱、文档等)1、显示日期的指令:d...
- Linux的常用命令就是记不住,怎么办?于是推出了这套教程
-
1.帮助命令1.1help命令#语法格式:命令--help#作用:查看某个命令的帮助信息#示例:#ls--help查看ls命令的帮助信息#netst...
- Linux的30个常用命令汇总,运维大神必掌握技能!
-
以下是Linux系统中最常用的30个命令,精简版覆盖日常操作核心需求,适合快速掌握:一、文件/目录操作1.`ls`-列出目录内容`ls-l`(详细信息)|`ls-a`(显示隐藏文件)...
- Linux/Unix 系统中非常常用的命令
-
Linux/Unix系统中非常常用的命令,它们是进行文件操作、文本处理、权限管理等任务的基础。下面是对这些命令的简要说明:**文件操作类:*****`ls`(list):**列出目录内容,显...
- 一周热门
- 最近发表
- 标签列表
-
- mybatiscollection (79)
- mqtt服务器 (88)
- keyerror (78)
- c#map (65)
- resize函数 (64)
- xftp6 (83)
- bt搜索 (75)
- c#var (76)
- mybatis大于等于 (64)
- xcode-select (66)
- mysql授权 (74)
- 下载测试 (70)
- linuxlink (65)
- pythonwget (67)
- androidinclude (65)
- logstashinput (65)
- hadoop端口 (65)
- vue阻止冒泡 (67)
- oracle时间戳转换日期 (64)
- jquery跨域 (68)
- php写入文件 (73)
- kafkatools (66)
- mysql导出数据库 (66)
- jquery鼠标移入移出 (71)
- 取小数点后两位的函数 (73)