将ComfyUI工作流部署为API服务
bigegpt 2025-01-12 11:36 7 浏览
ComfyUI 是一种流行的 GUI,用于支持 Stable Diffusion 工作流程。ComfyUI 为你提供了一个简单的用户界面来运行 Stable Diffusion,而无需了解diffusers的代码。
对于大多数使用 ComfyUI 的工作流程而言,运行自定义节点的能力已变得至关重要。这就是我们构建新 build_commands 功能的原因:你现在可以轻松打包 ComfyUI 工作流程以使用 Baseten 上的任何自定义节点或模型检查点!
让我们一起来看一个例子。
1、自定义 ComfyUI 工作流
风格转换如今风靡一时,因此让我们在 Baseten 上部署一个风格转换工作流,将宠物图片转换为动漫风格。我们将使用的工作流可在此处找到。
首先,让我们从 Truss 示例 Github 存储库中获取 ComfyUI Truss:
git clone https://github.com/basetenlabs/truss-examples.git
cd truss-examples/comfyui-truss
此存储库已包含部署 ComfyUI 工作流所需的所有文件。我们只需要修改两个文件: config.yaml 和 data/comfy_ui_workflow.json。让我们从 config.yaml 开始。
2、在 config.yaml 中添加 build_commands
在 config.yaml 文件中,我们可以指定一个名为 build_commands 的键,它们是将在我们的容器构建过程中运行的 shell 命令。以下是一个例子:
build_commands:
- git clone https://github.com/comfyanonymous/ComfyUI.git
- cd ComfyUI && git checkout b1fd26fe9e55163f780bf9e5f56bf9bf5f035c93 && pip install -r requirements.txt
- cd ComfyUI/custom_nodes && git clone https://github.com/LykosAI/ComfyUI-Inference-Core-Nodes --recursive && cd ComfyUI-Inference-Core-Nodes && pip install -e .[cuda12]
- cd ComfyUI/custom_nodes && git clone https://github.com/ZHO-ZHO-ZHO/ComfyUI-Gemini --recursive && cd ComfyUI-Gemini && pip install -r requirements.txt
- cd ComfyUI/custom_nodes && git clone https://github.com/kijai/ComfyUI-Marigold --recursive && cd ComfyUI-Marigold && pip install -r requirements.txt
- cd ComfyUI/custom_nodes && git clone https://github.com/omar92/ComfyUI-QualityOfLifeSuit_Omar92 --recursive
- cd ComfyUI/custom_nodes && git clone https://github.com/Fannovel16/comfyui_controlnet_aux --recursive && cd comfyui_controlnet_aux && pip install -r requirements.txt
- cd ComfyUI/models/controlnet && wget -O control-lora-canny-rank256.safetensors https://huggingface.co/stabilityai/control-lora/resolve/main/control-LoRAs-rank256/control-lora-canny-rank256.safetensors
- cd ComfyUI/models/controlnet && wget -O control-lora-depth-rank256.safetensors https://huggingface.co/stabilityai/control-lora/resolve/main/control-LoRAs-rank256/control-lora-depth-rank256.safetensors
- cd ComfyUI/models/checkpoints && wget -O dreamshaperXL_v21TurboDPMSDE.safetensors https://civitai.com/api/download/models/351306
- cd ComfyUI/models/loras && wget -O StudioGhibli.Redmond-StdGBRRedmAF-StudioGhibli.safetensors https://huggingface.co/artificialguybr/StudioGhibli.Redmond-V2/resolve/main/StudioGhibli.Redmond-StdGBRRedmAF-StudioGhibli.safetensors
ComfyUI 管理器允许你轻松安装自定义节点。在后台,管理器只需克隆存储库并安装 Python 依赖项。我们可以使用 git clone ... && pip install -r requirements 之类的命令来模拟该行为。
在 build_commands 下,你可以运行任意 shell 命令,例如 git clone、 cd 或 wget。这样,你可以安装任何检查点、LoRA 和 ControlNet,并将它们放在 ComfyUI 内的相应文件夹中。你甚至可以创建新目录,例如 ipadapter。
build_commands 下的每一行都执行 Docker RUN 命令;由于这些命令是在映像构建步骤期间运行的,因此它们会缓存到 Docker 映像中。这样,当你的容器启动时,所有自定义节点和模型都已下载,这大大减少了冷启动的时间。
这是我们将用于示例的完整 config.yaml 文件:
build_commands:
- git clone https://github.com/comfyanonymous/ComfyUI.git
- cd ComfyUI && git checkout b1fd26fe9e55163f780bf9e5f56bf9bf5f035c93 && pip install -r requirements.txt
- cd ComfyUI/custom_nodes && git clone https://github.com/LykosAI/ComfyUI-Inference-Core-Nodes --recursive && cd ComfyUI-Inference-Core-Nodes && pip install -e .[cuda12]
- cd ComfyUI/custom_nodes && git clone https://github.com/ZHO-ZHO-ZHO/ComfyUI-Gemini --recursive && cd ComfyUI-Gemini && pip install -r requirements.txt
- cd ComfyUI/custom_nodes && git clone https://github.com/kijai/ComfyUI-Marigold --recursive && cd ComfyUI-Marigold && pip install -r requirements.txt
- cd ComfyUI/custom_nodes && git clone https://github.com/omar92/ComfyUI-QualityOfLifeSuit_Omar92 --recursive
- cd ComfyUI/custom_nodes && git clone https://github.com/Fannovel16/comfyui_controlnet_aux --recursive && cd comfyui_controlnet_aux && pip install -r requirements.txt
- cd ComfyUI/models/controlnet && wget -O control-lora-canny-rank256.safetensors https://huggingface.co/stabilityai/control-lora/resolve/main/control-LoRAs-rank256/control-lora-canny-rank256.safetensors
- cd ComfyUI/models/controlnet && wget -O control-lora-depth-rank256.safetensors https://huggingface.co/stabilityai/control-lora/resolve/main/control-LoRAs-rank256/control-lora-depth-rank256.safetensors
- cd ComfyUI/models/checkpoints && wget -O dreamshaperXL_v21TurboDPMSDE.safetensors https://civitai.com/api/download/models/351306
- cd ComfyUI/models/loras && wget -O StudioGhibli.Redmond-StdGBRRedmAF-StudioGhibli.safetensors https://huggingface.co/artificialguybr/StudioGhibli.Redmond-V2/resolve/main/StudioGhibli.Redmond-StdGBRRedmAF-StudioGhibli.safetensors
environment_variables: {}
external_package_dirs: []
model_metadata: {}
model_name: ComfyUI Anime Pet Style Transfer
python_version: py310
requirements:
- websocket-client==1.6.4
- accelerate==0.23.0
- opencv-python
resources:
accelerator: A100
use_gpu: true
secrets: {}
system_packages:
- wget
- ffmpeg
- libgl1-mesa-glx
3、将 ComfyUI 工作流修改为与 API 兼容的格式
ComfyUI 工作流可以通过以 API 格式导出在 Baseten 上运行。如果你需要帮助相应地转换工作流,请查看我们的博客,了解如何在 API 端点后面提供 ComfyUI 模型。
对于本教程,可以从此处复制工作流文件。此工作流有两个输入:提示和图像。我们可以使用 handlebars 模板 {{prompt}} 和 {{input_image}} 在我们的工作流 JSON 文件中指定这些变量。
就是这样!我们现在可以将我们的 ComfyUI 工作流部署到 Baseten!
4、将ComfyUI 工作流部署到 ??Baseten
要将我们的工作流部署到 ??Baseten,请确保你已安装 truss Python 包。
pip install truss --upgrade
使用 truss_examples/comfyui_truss 作为根目录,我们可以运行以下命令来部署到 Baseten:
truss push --publish
如果出现提示,请粘贴你的 Baseten API 密钥。此命令将打包你的 Truss 并将其部署到 Baseten 的云上。Docker 容器将被构建,然后作为 API 端点部署。
现在我们将运行我们的第一个推理!
5、在ComfyUI API 端点上运行推理
一旦你的模型已部署并处于活动状态,就可以像这样调用 API 端点:
import requests
import os
import base64
from PIL import Image
from io import BytesIO
# Replace the empty string with your model id below
model_id = ""
baseten_api_key = os.environ["BASETEN_API_KEY"]
BASE64_PREAMBLE = "data:image/png;base64,"
def pil_to_b64(pil_img):
buffered = BytesIO()
pil_img.save(buffered, format="PNG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return img_str
def b64_to_pil(b64_str):
return Image.open(BytesIO(base64.b64decode(b64_str.replace(BASE64_PREAMBLE, ""))))
values = {
"prompt": "american Shorthair",
"input_image": {"type": "image", "data": pil_to_b64(Image.open("/path/to/cat.png"))}
}
resp = requests.post(
f"https://model-{model_id}.api.baseten.co/production/predict",
headers={"Authorization": f"Api-Key {baseten_api_key}"},
json={"workflow_values": values}
)
res = resp.json()
results = res.get("result")
for item in results:
if item.get("format") == "png":
data = item.get("data")
img = b64_to_pil(data)
img.save(f"pet-style-transfer-1.png")
API 调用返回 result,即模型返回的图像列表。 result中每一项的 data是输出图像的 base64 字符串表示。我们将此 base64 字符串转换为 PIL 对象并将其保存为图像。
以下是一些示例输入及其对应的动漫风格化输出:
这就是在 Baseten 上将 ComfyUI 工作流作为 API 端点运行所需的全部内容。现在,借助新的 build_commands 功能,添加你自己的自定义节点和模型检查点变得更加容易。
相关推荐
- 10w qps缓存数据库——Redis(redis缓存调优)
-
一、Redis数据库介绍:Redis:非关系型缓存数据库nosql:非关系型数据库没有表,没有表与表之间的关系,更不存在外键存储数据的形式为key:values的形式c语言写的服务(监听端口),用来存...
- Redis系列专题4--Redis配置参数详解
-
本文基于windowsX64,3.2.100版本讲解,不同版本默认配置参数不同在Redis中,Redis的根目录中有一个配置文件(redis.conf,windows下为redis.windows....
- 开源一夏 | 23 张图,4500 字从入门到精通解释 Redis
-
redis是目前出场率最高的NoSQL数据库,同时也是一个开源的数据结构存储系统,在缓存、数据库、消息处理等场景使用的非常多,本文瑞哥就带着大家用一篇文章入门这个强大的开源数据库——Redis。...
- redis的简单与集群搭建(redis建立集群)
-
Redis是什么?是开源免费用c语言编写的单线程高性能的(key-value形式)内存数据库,基于内存运行并支持持久化的nosql数据库作用主要用来做缓存,单不仅仅是做缓存,比如:redis的计数器生...
- 推荐几个好用Redis图形化客户端工具
-
RedisPlushttps://gitee.com/MaxBill/RedisPlusRedisPlus是为Redis可视化管理开发的一款开源免费的桌面客户端软件,支持Windows、Linux...
- 关于Redis在windows上运行及fork函数问题
-
Redis在将数据库进行持久化操作时,需要fork一个进程,但是windows并不支持fork,导致在持久化操作期间,Redis必须阻塞所有的客户端直至持久化操作完成。微软的一些工程师花费时间在解决在...
- 你必须懂的Redis十大应用场景(redis常见应用场景)
-
Redis作为一款高性能的键值存储数据库,在互联网业务中有着广泛的应用。今天,我们就来详细盘点一下Redis的十大常用业务场景,并附上Golang的示例代码和简图,帮助大家更好地理解和应用Redis。...
- 极简Redis配置(redis的配置)
-
一、概述Redis的配置文件位于Redis安装目录下,文件名为redis.conf(Windows名为redis.windows.conf,linux下的是redis.conf)你可以通过C...
- 什么是redis,怎么启动及如何压测
-
从今天起咱们一起来学习一下关于“redis监控与调优”的内容。一、Redis介绍Redis是一种高级key-value数据库。它跟memcached类似,不过数据可以持久化,而且支持的数据类型很丰富。...
- 一款全新Redis UI可视化管理工具,支持WebUI和桌面——P3X Redis UI
-
介绍P3XRedisUI这是一个非常实用的RedisGUI,提供响应式WebUI访问或作为桌面应用程序使用,桌面端是跨平台的,而且完美支持中文界面。Githubhttps://github....
- windows系统的服务器快速部署java项目环境地址
-
1、mysql:https://dev.mysql.com/downloads/mysql/(msi安装包)2、redis:https://github.com/tporadowski/redis/r...
- window11 下 redis 下载与安装(windows安装redis客户端)
-
#热爱编程是一种怎样的体验#window11下redis下载与安装1)各个版本redis下载(windows)https://github.com/MicrosoftArchive/r...
- 一款轻量级的Redis客户端工具,贼好用!
-
使用命令行来操作Redis是一件非常麻烦的事情,我们一般会选用客户端工具来操作Redis。今天给大家分享一款好用的Redis客户端工具TinyRDM,它的界面清新又优雅,希望对大家有所帮助!简介Ti...
- 一个.NET开发且功能强大的Windows远程控制系统
-
我们致力于探索、分享和推荐最新的实用技术栈、开源项目、框架和实用工具。每天都有新鲜的开源资讯等待你的发现!项目介绍SiMayRemoteMonitorOS是一个基于Windows的远程控制系统,完...
- Redis客户端工具详解(4款主流工具)
-
大家好,我是mikechen。Redis是大型架构的基石,也是大厂最爱考察内容,今天就给大家重点详解4款Redis工具@mikechen本篇已收于mikechen原创超30万字《阿里架构师进阶专题合集...
- 一周热门
- 最近发表
- 标签列表
-
- mybatiscollection (79)
- mqtt服务器 (88)
- keyerror (78)
- c#map (65)
- resize函数 (64)
- xftp6 (83)
- bt搜索 (75)
- c#var (76)
- mybatis大于等于 (64)
- xcode-select (66)
- mysql授权 (74)
- 下载测试 (70)
- skip-name-resolve (63)
- linuxlink (65)
- pythonwget (67)
- logstashinput (65)
- hadoop端口 (65)
- vue阻止冒泡 (67)
- oracle时间戳转换日期 (64)
- jquery跨域 (68)
- php写入文件 (73)
- kafkatools (66)
- mysql导出数据库 (66)
- jquery鼠标移入移出 (71)
- 取小数点后两位的函数 (73)