Ubuntu os中部署Deep seek(ubuntu single)
bigegpt 2025-03-28 15:03 18 浏览
1. 环境准备
1.1 硬件要求
o 操作系统: Ubuntu 24.04 LTS
o GPU(可选): NVIDIA GPU(建议至少 24GB VRAM,如 RTX 4090 / A100)
o CPU(仅用于 CPU 推理): 至少 8 核,推荐 16 核以上
o 内存: 至少 32GB(建议 64GB 以上)
o 硬盘空间: 至少 60GB(用于模型存储)
2. 安装必要的软件和驱动
2.1 更新系统
sudo apt update && sudo apt upgrade -y
2.2 安装 NVIDIA 驱动(如果使用 GPU)
检查显卡型号:
lspci | grep -i nvidia
安装 NVIDIA 官方驱动(例如 535 版本):
sudo apt install -y nvidia-driver-535
reboot # 重启系统以加载新驱动
验证驱动安装:
nvidia-smi
如果输出类似以下内容,说明驱动安装成功:
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 535.113.01 Driver Version: 535.113.01 CUDA Version: 12.2 |
|-------------------------------+----------------------+----------------------+
2.3 安装 CUDA 和 cuDNN(GPU 用户)
安装 CUDA
sudo apt install -y cuda
安装 cuDNN
sudo apt install -y libcudnn8
验证 CUDA:
nvcc --version
3. 创建 Python 环境
3.1 安装 Miniconda(推荐)
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh
安装完成后,关闭终端重新打开,或手动运行:
source ~/.bashrc
3.2 创建 Python 环境
conda create -n deepseek python=3.10 -y
conda activate deepseek
4. 安装 PyTorch 和 DeepSeek 依赖
4.1 安装 PyTorch
GPU 版本
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
CPU 版本
pip install torch torchvision torchaudio
测试 PyTorch 是否安装成功:
python -c "import torch; print(torch.cuda.is_available())"
如果输出 True,说明 PyTorch 可以使用 GPU。
4.2 安装 transformers、accelerate 和 vllm
pip install transformers accelerate vllm
5. 下载 DeepSeek 代码和模型
5.1 下载 DeepSeek 代码
git clone https://github.com/DeepSeek-AI/DeepSeek-LLM.git
cd DeepSeek-LLM
5.2 下载 DeepSeek 7B 模型
官方 Hugging Face 地址:
https://huggingface.co/DeepSeek-AI/deepseek-llm-7b
手动下载
mkdir -p models/deepseek-llm-7b
cd models/deepseek-llm-7b
wget https://huggingface.co/DeepSeek-AI/deepseek-llm-7b/resolve/main/config.json
wget https://huggingface.co/DeepSeek-AI/deepseek-llm-7b/resolve/main/model.safetensors
wget https://huggingface.co/DeepSeek-AI/deepseek-llm-7b/resolve/main/tokenizer.model
(或使用 git-lfs 下载完整模型)
git lfs install
git clone https://huggingface.co/DeepSeek-AI/deepseek-llm-7b models/deepseek-llm-7b
6. 运行 DeepSeek
6.1 运行 DeepSeek 推理
创建 run.py 文件:
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_name = "models/deepseek-llm-7b" # 本地模型路径
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
inputs = tokenizer("你好,DeepSeek!", return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
运行:
python run.py
7. 运行 Web 界面
可以使用 FastAPI + Gradio 构建 Web 界面。
7.1 安装依赖
pip install fastapi gradio uvicorn
7.2 创建 web_app.py
from fastapi import FastAPI
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
app = FastAPI()
# 加载模型
model_name = "models/deepseek-llm-7b"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
def generate_response(prompt):
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
outputs = model.generate(**inputs, max_new_tokens=100)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Gradio 界面
def chatbot(prompt):
return generate_response(prompt)
iface = gr.Interface(fn=chatbot, inputs="text", outputs="text")
@app.get("/")
def read_root():
return {"message": "DeepSeek Web Server is Running"}
# 启动 Gradio
@app.get("/webui")
def launch_gradio():
iface.launch(share=True)
7.3 运行 Web 界面
uvicorn web_app:app --host 0.0.0.0 --port 8000
在浏览器中打开:
http://localhost:8000/webui
8. 总结
步骤 命令
更新系统 sudo apt update && sudo apt upgrade -y
安装 GPU 驱动 sudo apt install -y nvidia-driver-535
安装 CUDA 和 cuDNN sudo apt install -y cuda libcudnn8
创建 Python 环境 conda create -n deepseek python=3.10 -y && conda activate deepseek
安装 PyTorch pip install torch torchvision torchaudio --index-url
https://download.pytorch.org/whl/cu118
安装 transformers pip install transformers accelerate vllm
下载模型 git clone
https://huggingface.co/DeepSeek-AI/deepseek-llm-7b models/deepseek-llm-7b
运行推理 python run.py
运行 Web 界面 uvicorn web_app:app --host 0.0.0.0 --port 8000
这样,你就可以在 Ubuntu 24.04 上部署 DeepSeek-LLM 了!
相关推荐
- 恢复软件6款汇总推荐,帮你减轻数据恢复压力!
-
在当今数字化生活中,数据丢失的风险如影随形。无论是误删文件、硬盘故障,还是遭遇病毒攻击,丢失的数据都可能给我们带来不小的麻烦。此时,一款优秀的数据恢复软件就成为了挽救数据的关键。今天,为大家汇总推荐...
- 中兴星星一号刷回官方原版recovery的教程
-
【搞科技教程】中兴星星一号的官方recovery也来说一下了,因为之前给大家分享过了第三方的recovery了,之前给大家分享的第三方recovery也是采用一键刷入的方式,如果细心的朋友会发现,之前...
- 新玩机工具箱,Uotan柚坛工具箱软件体验
-
以前的手机系统功能比较单调,各厂商的重视程度不一样,所以喜欢玩机的朋友会解锁手机系统的读写权限,来进行刷机或者ROOT之类的操作,让使用体验更好。随着现在的手机系统越来越保守,以及自身功能的增强,...
- 三星g906k刷recovery教程_三星g906k中文recovery下载
-
【搞科技教程】看到有一些机友在找三星g906k的第三方recovery,下面就来说一下详细的recovery的刷入方法了,因为手机只有有了第三方的recovery之后才可以刷第三方的root包和系统包...
- 中兴星星2号刷recovery教程_星星二号中文recovery下载
-
【搞科技教程】咱们的中兴星星2手机也就是中兴星星二号手机的第三方recovery已经出来了,并且是中文版的,有了这个recovery之后,咱们的手机就可以轻松的刷第三方的系统包了,如果没有第三方的re...
- 数据恢复软件有哪些值得推荐?这 6 款亲测好用的工具汇总请收好!
-
在数字生活中,数据丢失的阴霾常常突如其来。无论是误删工作文档、格式化重要磁盘,还是遭遇系统崩溃,都可能让我们陷入焦虑。关键时刻,一款得力的数据恢复软件便是那根“救命稻草”。今天,为大家精心汇总6...
- 中兴u956刷入recovery的教程(中兴e5900刷机)
-
【搞科技教程】这次主要来给大家说说中兴u956手机如何刷入第三方的recovery,因为第三方的recovery工具是咱们刷第三方rom包的基础,可是很我欠却不会刷,所以太这里来给大家整理了一下详细的...
- 联想A850+刷recovery教程 联想A850+第三方recovery下载
-
【搞科技教程】联想A850+的第三方recovery出来了,这个第三方的recovery是非常的重要的,比如咱们的手机要刷第三方的系统包的时候,都是需要用到这个第三方的recovery的,在网上也是有...
- 工具侠重大更新 智能机上刷机一条龙完成
-
工具侠是针对玩机的机油开发的一款工具,不管是发烧级别的粉丝,还是普通小白用户,都可以在工具侠上找到你喜欢的工具应用。这不,最新的工具侠2.0.16版本,更新了专门为小白准备的刷机助手工具,以及MTK超...
- shift+delete删除的文件找回6种硬盘数据恢复工具
-
硬盘作为电脑的重要存储设备,如同一个巨大的数字仓库,承载着我们日常工作、学习和生活中的各种文件,从珍贵的照片、重要的工作文档到喜爱的视频、音乐等,都依赖硬盘来安全存放。但有时,我们可能会不小心用sh...
- 使用vscode+Deepseek 实现AI编程 基于Cline和continue
-
尊敬的诸位!我是一名专注于嵌入式开发的物联网工程师。关注我,持续分享最新物联网与AI资讯和开发实战。期望与您携手探寻物联网与AI的无尽可能。这两天deepseek3.0上线,据说编程能力比肩Cl...
- 详解如何使用VSCode搭建TypeScript环境(适合小白)
-
搭建Javascript环境因为TypeScript不能直接在浏览器上运行。它需要编译器来编译并生成JavaScript文件。所以需要首先安装好javascript环境,可以参考文章:https://...
- 使用VSCode来书写你的Jupyter Notebooks
-
现在你可以在VScode里面来书写你的notebook了,使用起来十分的方便。下面来给大家演示一下环境的搭建。首先需要安装一个jupyter的包,使用下面的命令安装:pip3install-ih...
- 使用VSCode模板提高Vue开发效率(vscode开发vue插件)
-
安装VSCode安装Vetur和VueHelper插件,安装完成后需要重启VScode。在扩展插件搜索框中找到如下Vetur和VueHelper两个插件,注意看图标。添加Vue模板打...
- 干货!VsCode接入DeepSeek实现AI编程的5种主流插件详解
-
AI大模型对编程的影响非常之大,可以说首当其冲,Cursor等对话式编程工具渐渐渗透到开发者的工作中,作为AI编程的明星产品,Cursor虽然好用,但是贵啊,所以咱们得找平替,最好免费那种。俗话说,不...
- 一周热门
- 最近发表
- 标签列表
-
- mybatiscollection (79)
- mqtt服务器 (88)
- keyerror (78)
- c#map (65)
- xftp6 (83)
- bt搜索 (75)
- c#var (76)
- xcode-select (66)
- mysql授权 (74)
- 下载测试 (70)
- linuxlink (65)
- pythonwget (67)
- androidinclude (65)
- libcrypto.so (74)
- linux安装minio (74)
- ubuntuunzip (67)
- vscode使用技巧 (83)
- logstashinput (65)
- vue阻止冒泡 (67)
- jquery跨域 (68)
- php写入文件 (73)
- kafkatools (66)
- mysql导出数据库 (66)
- jquery鼠标移入移出 (71)
- 取小数点后两位的函数 (73)