机器学习-GAN生成对抗网络
bigegpt 2025-05-27 12:46 10 浏览
1、什么是GAN?
GAN是2014年6月,Bengio团队提出来的,感兴趣的可以搜索论文:《Generative Adversarial Networks》
由生成器和判别器组成,即Generator和Discriminator,可以完成很多匪夷所思的生成问题。在图像生成、语音转换、文本生成领域均占有很重要地位。
Generator生成器:是一个深度神经网络,输入一个低维vector,输出高维vector(图片或文本或语音)
Discriminator判别器:也是一个深度神经网络,输入一个高维vector(图片或文本或语音),输出一个标量。标量越大,代表输入图片(或文本语音)越真实。
举个例子:(图片来自网络)
给定真实数据集 R,G 是生成器(generator),它的任务是生成能以假乱真的假数据;而 D 是判别器 (discriminator),它从真实数据集或者 G 那里获取数据, 然后做出判别真假的标记。
2、核心思想
判断器的任务是尽力将假的判断为假的,将真的判断为真的;生成器的任务是使生成的越真越好。两者交替迭代训练。
3、pytorch代码小试牛刀
代码主要参考:
https://blog.csdn.net/qinglingLS/article/details/91480550
# -*- coding: utf-8 -*-
# @Time : 2021/12/15 18:39
# @Author :
# @Email :
# @File : GAN_test.py
# coding=utf-8
import torch.autograd
import torch.nn as nn
from torch.autograd import Variable
from torchvision import transforms
from torchvision import datasets
from torchvision.utils import save_image
import os
# 创建文件夹
if not os.path.exists('./img'):
os.mkdir('./img')
# 有GPU优先使用GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def to_img(x):
out = 0.5 * (x + 1)
out = out.clamp(0, 1) # Clamp函数可以将随机变化的数值限制在一个给定的区间[min, max]内:
out = out.view(-1, 1, 28, 28) # view()函数作用是将一个多行的Tensor,拼接成一行
return out
batch_size = 128
num_epoch = 100
z_dimension = 100
# 图像预处理
img_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,)) # (x-mean) / std(归一化)
])
# mnist dataset mnist数据集下载(已经下载之后,download=FALSE)
mnist = datasets.MNIST(
root='./data/', train=True, transform=img_transform, download=True
)
# data loader 数据载入
dataloader = torch.utils.data.DataLoader(
dataset=mnist, batch_size=batch_size, shuffle=True
)
# 定义判别器 #####Discriminator######使用多层网络来作为判别器
# 将图片28x28展开成784,然后通过多层感知器,中间经过斜率设置为0.2的LeakyReLU激活函数,
# 最后接sigmoid激活函数得到一个0到1之间的概率进行二分类。
class discriminator(nn.Module):
def __init__(self):
super(discriminator, self).__init__()
self.dis = nn.Sequential(
nn.Linear(784, 256), # 输入特征数为784,输出为256
nn.LeakyReLU(0.2), # 进行非线性映射
nn.Linear(256, 256), # 进行一个线性映射
nn.LeakyReLU(0.2),
nn.Linear(256, 1),
nn.Sigmoid() # 也是一个激活函数,二分类问题中,
# sigmoid可以班实数映射到【0,1】,作为概率值,
# 多分类用softmax函数
)
def forward(self, x):
x = self.dis(x)
return x
# ###### 定义生成器 Generator #####
# 输入一个100维的0~1之间的高斯分布,然后通过第一层线性变换将其映射到256维,
# 然后通过LeakyReLU激活函数,接着进行一个线性变换,再经过一个LeakyReLU激活函数,
# 然后经过线性变换将其变成784维,最后经过Tanh激活函数是希望生成的假的图片数据分布
# 能够在-1~1之间。
class generator(nn.Module):
def __init__(self):
super(generator, self).__init__()
self.gen = nn.Sequential(
nn.Linear(100, 256), # 用线性变换将输入映射到256维
nn.ReLU(True), # relu激活
nn.Linear(256, 256), # 线性变换
nn.ReLU(True), # relu激活
nn.Linear(256, 784), # 线性变换
nn.Tanh() # Tanh激活使得生成数据分布在【-1,1】之间,因为输入的真实数据的经过transforms之后也是这个分布
)
def forward(self, x):
x = self.gen(x)
return x
# 创建对象
D = discriminator()
G = generator()
if torch.cuda.is_available():
D = D.to(device)
G = G.to(device)
# 首先需要定义loss的度量方式 (二分类的交叉熵)
# 其次定义 优化函数,优化函数的学习率为0.0003
criterion = nn.BCELoss() # 是单目标二分类交叉熵函数
d_optimizer = torch.optim.Adam(D.parameters(), lr=0.0003)
g_optimizer = torch.optim.Adam(G.parameters(), lr=0.0003)
# ##########################进入训练##判别器的判断过程#####################
for epoch in range(num_epoch): # 进行多个epoch的训练
for i, (img, _) in enumerate(dataloader):
num_img = img.size(0)
# view()函数作用是将一个多行的Tensor,拼接成一行
# 第一个参数是要拼接的tensor,第二个参数是-1
# =============================训练判别器==================
img = img.view(num_img, -1) # 将图片展开为28*28=784
real_img = Variable(img).to(device) # 将tensor变成Variable放入计算图中
real_label = Variable(torch.ones(num_img)).squeeze(-1).to(device) # 定义真实的图片label为1,
fake_label = Variable(torch.zeros(num_img)).squeeze(-1).to(device) # 定义假的图片的label为0
# ########判别器训练train#####################
# 分为两部分:1、真的图像判别为真;2、假的图像判别为假
# 计算真实图片的损失
real_out = D(real_img).squeeze(-1) # 将真实图片放入判别器中,並降低一個維度
# print("real_out,real_label Size=",real_out.size(),',',real_label.size())
d_loss_real = criterion(real_out, real_label) # 得到真实图片的loss
real_scores = real_out # 得到真实图片的判别值,输出的值越接近1越好
# 计算假的图片的损失
z = Variable(torch.randn(num_img, z_dimension)).to(device) # 随机生成一些噪声
fake_img = G(z).detach() # 随机噪声放入生成网络中,生成一张假的图片。 # 避免梯度传到G,因为G不用更新, detach分离
fake_out = D(fake_img).squeeze(-1) # 判别器判断假的图片,
d_loss_fake = criterion(fake_out, fake_label) # 得到假的图片的loss
fake_scores = fake_out # 得到假图片的判别值,对于判别器来说,假图片的损失越接近0越好
# 损失函数和优化
d_loss = d_loss_real + d_loss_fake # 损失包括判真损失和判假损失
d_optimizer.zero_grad() # 在反向传播之前,先将梯度归0
d_loss.backward() # 将误差反向传播
d_optimizer.step() # 更新参数
# ==================训练生成器============================
# ###############################生成网络的训练###############################
# 原理:目的是希望生成的假的图片被判别器判断为真的图片,
# 在此过程中,将判别器固定,将假的图片传入判别器的结果与真实的label对应,
# 反向传播更新的参数是生成网络里面的参数,
# 这样可以通过更新生成网络里面的参数,来训练网络,使得生成的图片让判别器以为是真的
# 这样就达到了对抗的目的
# 计算假的图片的损失
z = Variable(torch.randn(num_img, z_dimension)).to(device) # 得到随机噪声
fake_img = G(z) # 随机噪声输入到生成器中,得到一副假的图片
output = D(fake_img).squeeze(-1) # 经过判别器得到的结果
g_loss = criterion(output, real_label) # 得到的假的图片与真实的图片的label的loss
# bp and optimize
g_optimizer.zero_grad() # 梯度归0
g_loss.backward() # 进行反向传播
g_optimizer.step() # .step()一般用在反向传播后面,用于更新生成网络的参数
# 打印中间的损失
if (i + 1) % 100 == 0:
print('Epoch[{}/{}],d_loss:{:.6f},g_loss:{:.6f} '
'D real: {:.6f},D fake: {:.6f}'.format(
epoch, num_epoch, d_loss.data.item(), g_loss.data.item(),
real_scores.data.mean(), fake_scores.data.mean() # 打印的是真实图片的损失均值
))
if epoch == 0:
real_images = to_img(real_img.cpu().data)
save_image(real_images, './img/real_images.png')
fake_images = to_img(fake_img.cpu().data)
save_image(fake_images, './img/fake_images-{}.png'.format(epoch + 1))
# 保存模型
torch.save(G.state_dict(), './generator.pth')
torch.save(D.state_dict(), './discriminator.pth')
运行结果:
相关推荐
- 【Docker 新手入门指南】第十章:Dockerfile
-
Dockerfile是Docker镜像构建的核心配置文件,通过预定义的指令集实现镜像的自动化构建。以下从核心概念、指令详解、最佳实践三方面展开说明,帮助你系统掌握Dockerfile的使用逻...
- Windows下最简单的ESP8266_ROTS_ESP-IDF环境搭建与腾讯云SDK编译
-
前言其实也没啥可说的,只是我感觉ESP-IDF对新手来说很不友好,很容易踩坑,尤其是对业余DIY爱好者搭建环境非常困难,即使有官方文档,或者网上的其他文档,但是还是很容易踩坑,多研究,记住两点就行了,...
- python虚拟环境迁移(python虚拟环境conda)
-
主机A的虚拟环境向主机B迁移。前提条件:主机A和主机B已经安装了virtualenv1.主机A操作如下虚拟环境目录:venv进入虚拟环境:sourcevenv/bin/active(1)记录虚拟环...
- Python爬虫进阶教程(二):线程、协程
-
简介线程线程也叫轻量级进程,它是一个基本的CPU执行单元,也是程序执行过程中的最小单元,由线程ID、程序计数器、寄存器集合和堆栈共同组成。线程的引入减小了程序并发执行时的开销,提高了操作系统的并发性能...
- 基于网络安全的Docker逃逸(docker)
-
如何判断当前机器是否为Docker容器环境Metasploit中的checkcontainer模块、(判断是否为虚拟机,checkvm模块)搭配学习教程1.检查根目录下是否存在.dockerenv文...
- Python编程语言被纳入浙江高考,小学生都开始学了
-
今年9月份开始的新学期,浙江省三到九年级信息技术课将同步替换新教材。其中,新初二将新增Python编程课程内容。新高一信息技术编程语言由VB替换为Python,大数据、人工智能、程序设计与算法按照教材...
- CentOS 7下安装Python 3.10的完整过程
-
1.安装相应的编译工具yum-ygroupinstall"Developmenttools"yum-yinstallzlib-develbzip2-develope...
- 如何在Ubuntu 20.04上部署Odoo 14
-
Odoo是世界上最受欢迎的多合一商务软件。它提供了一系列业务应用程序,包括CRM,网站,电子商务,计费,会计,制造,仓库,项目管理,库存等等,所有这些都无缝集成在一起。Odoo可以通过几种不同的方式进...
- Ubuntu 系统安装 PyTorch 全流程指南
-
当前环境:Ubuntu22.04,显卡为GeForceRTX3080Ti1、下载显卡驱动驱动网站:https://www.nvidia.com/en-us/drivers/根据自己的显卡型号和...
- spark+python环境搭建(python 环境搭建)
-
最近项目需要用到spark大数据相关技术,周末有空spark环境搭起来...目标spark,python运行环境部署在linux服务器个人通过vscode开发通过远程python解释器执行代码准备...
- centos7.9安装最新python-3.11.1(centos安装python环境)
-
centos7.9安装最新python-3.11.1centos7.9默认安装的是python-2.7.5版本,安全扫描时会有很多漏洞,比如:Python命令注入漏洞(CVE-2015-2010...
- Linux系统下,五大步骤安装Python
-
一、下载Python包网上教程大多是通过官方地址进行下载Python的,但由于国内网络环境问题,会导致下载很慢,所以这里建议通过国内镜像进行下载例如:淘宝镜像http://npm.taobao.or...
- centos7上安装python3(centos7安装python3.7.2一键脚本)
-
centos7上默认安装的是python2,要使用python3则需要自行下载源码编译安装。1.安装依赖yum-ygroupinstall"Developmenttools"...
- 利用本地数据通过微调方式训练 本地DeepSeek-R1 蒸馏模型
-
网络上相应的教程基本都基于LLaMA-Factory进行,本文章主要顺着相应的教程一步步实现大模型的微调和训练。训练环境:可自行定义,mac、linux或者window之类的均可以,本文以ma...
- 【法器篇】天啦噜,库崩了没备份(天啦噜是什么意思?)
-
背景数据库没有做备份,一天突然由于断电或其他原因导致无法启动了,且设置了innodb_force_recovery=6都无法启动,里面的数据怎么才能恢复出来?本例采用解析建表语句+表空间传输的方式进行...
- 一周热门
- 最近发表
- 标签列表
-
- mybatiscollection (79)
- mqtt服务器 (88)
- keyerror (78)
- c#map (65)
- resize函数 (64)
- xftp6 (83)
- bt搜索 (75)
- c#var (76)
- mybatis大于等于 (64)
- xcode-select (66)
- mysql授权 (74)
- 下载测试 (70)
- skip-name-resolve (63)
- linuxlink (65)
- pythonwget (67)
- logstashinput (65)
- hadoop端口 (65)
- vue阻止冒泡 (67)
- oracle时间戳转换日期 (64)
- jquery跨域 (68)
- php写入文件 (73)
- kafkatools (66)
- mysql导出数据库 (66)
- jquery鼠标移入移出 (71)
- 取小数点后两位的函数 (73)