百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

用于复古图像着色的5个开源Python工具

bigegpt 2025-06-03 20:22 8 浏览

#头条创作挑战赛#

成千上万的老式照片和电影是在彩色图像还没有出现的年代拍摄的。如今,在深度学习的帮助下,我们可以为这些图片着色,使它们更接近原来的样子。

作为测试,我将使用两张图像。

本文将使用开源工具,这些工具可以从GitHub下载。

DeOldify

DeOldify是基于SA-GAN (Self-Attention - generate对抗网络)。一般来说,GAN由两个独立的神经网络组成——生成器和判别器。这两个网络都是由大量的图像训练而成,在训练过程中,生成器学会了制作似是而非的图像,而判别器学会将生成的图像与真实的图像区分开来。

为了在本地运行DeOldify,我们需要从GitHub中获取项目,并将预训练好的神经网络权重下载到“models”文件夹中(链接来自项目页面,未来作者可能会更改):

git clone https://github.com/jantic/DeOldify
cd DeOldify
mkdir models
cd models
wget https://data.deepai.org/deoldify/ColorizeArtistic_gen.pth
wget https://www.dropbox.com/s/usf7uifrctqw9rl/ColorizeStable_gen.pth?dl=1 -O ColorizeStable_gen.pth
cd ..

在这里,我将“device”设置为CPU - 如果您没有好的显卡,则很可能会收到“内存不足”错误(CPU上的处理时间约为3-5s,GPU上的处理时间约为0.5s,因此CPU计算也运行良好)。如果您希望运行独立的Python代码,则可以使用以下Python代码:

from deoldify import device
from deoldify.device_id import DeviceId
from deoldify.visualize import *
torch.backends.cudnn.benchmark=True
device.set(device=DeviceId.CPU)
colorizer = get_image_colorizer(artistic=True)
img_out = colorizer.get_transformed_image(path="anna_bw.jpg", 
                                          render_factor=15,
                                          watermarked=True)
img_out.save("anna_color.jpg")

至于结果,相当不错:

大家还可以尝试更改模型(有两种模型,具有更鲜艳颜色的“artistic”模型和“stable”模型可用)和影响输出颜色的“render_factor”变量。要去除水印可以将参数watermarked设置为False。

彩色图像着色(Colorful Image Colorization)

这个项目(
https://github.com/richzhang/colorization)使用卷积神经网络(CNN)来生成彩色图像。在体系结构上,它比DeOldify简单得多,但正因为如此,它可能更方便大家理解它的工作原理。

最后一次项目更新是在2020年,但代码仍然可以工作,并且可以很容易地在本地运行。

有两种模型可用,Python代码如下:

import colorizers as c
import torch
import matplotlib.image as plt
img = c.load_img("image_bw.jpg")
tens_l_orig, tens_l_rs = c.preprocess_img(img, HW=(256, 256))
img_bw = c.postprocess_tens(tens_l_orig, 
                torch.cat((0*tens_l_orig, 0*tens_l_orig), dim=1))
# eccv16
colorizer_eccv16 = c.eccv16(pretrained=True).eval()
out_img_eccv16 = c.postprocess_tens(tens_l_orig,
                                colorizer_eccv16(tens_l_rs).cpu())
plt.imsave('image_eccv16.jpg', out_img_eccv16)
# siggraph17
colorizer_siggraph17 = c.siggraph17(pretrained=True).eval()
out_img_siggraph17 = c.postprocess_tens(tens_l_orig,
                             colorizer_siggraph17(tens_l_rs).cpu())
plt.imsave('image_siggraph17.jpg', out_img_siggraph17)

结果如下:

ChromaGAN

顾名思义,ChromaGAN的作者也在使用生成对抗网络给图像上色。

这个项目可能只是作为研究的一个演示,操作并不是太友好。在使用项目之前,应下载“my_model_colorization.h5”文件(链接在GitHub页面上提供)并放入“MODEL”文件夹中。源图像和输出图像应该分别放在“chromagan_images”和“chromagan_results”文件夹中,然后可以参考作者jupyter notebook进行处理。要在本地PC上运行代码,“from google.colab.patches import cv2_imshow”和“cv2_imshow(…)”行应该删除。该项目正在使用Keras,如果出现“内存不足”的错误,建议在文件开头添加os.environ["CUDA_VISIBLE_DEVICES"] = "-1"。

Google Colorization Transformer (ColTran)

这个项目可以从google-research GitHub页面(
https://github.com/google-research/google-research/tree/master/coltran)下载,更详细的研究论文也可以下载。作者使用的是具有自注意力架构的轴向transformer,而不是GAN。在使用ColTran之前,我们需要下载预训练模型,这些模型位于ColTran.zip归档文件中。该归档文件包含3个模型检查点:colorizer、color_upsampler和spatial_upsampler。然后我们可以运行3个Python命令:

python3 custom_colorize.py --config=configs/colorizer.py --mode=colorize --accelerator_type=CPU --logdir=colorizer --img_dir=img_dir --store_dir=target_dir
python3 custom_colorize.py --config=configs/color_upsampler.py --mode=colorize --accelerator_type=CPU --logdir=color_upsampler --img_dir=img_dir --store_dir=target_dir --gen_data_dir=target_dir/stage1 --mode=colorize
python3 custom_colorize.py --config=configs/spatial_upsampler.py --mode=colorize --accelerator_type=CPU --logdir=spatial_upsampler --img_dir=img_dir --store_dir=target_dir --gen_data_dir=target_dir/stage2

这里的img_dir是一个文件夹,包含源图像,store_dir是输出文件夹,colorize是一种处理模式,而logdir是到预训练模型的路径。我们有3个处理步骤:我们有3个处理步骤:“colorizer”只使用512种输出颜色和64x64的输出图像进行粗着色,“color upsampler”改善颜色,“spatial upsampler”将图像提升到256x256的分辨率。

结果是颜色也很准确:

这个工具可能只是作为研究论文的演示而制作的,与以前的项目相比,没有现成的方法来处理任意分辨率的图像。输出仅限于 256x256 大小。

BigColor

BigColor项目是由作者在2022年提出的。作者还在他们的论文中写道:“我们将BigColor与最近的自动着色方法进行了比较,包括CIC、ChromaGAN、DeOldify、InstColor、ColTran和ToVivid。在六张具有挑战性的图像上,BigColor的优于所有方法。”

该项目本身可以从GitHub页面下载(
https://github.com/KIMGEONUNG/BigColor)。使用代码很简单。在进行转换之前,应该执行两个脚本download- pretraining.sh和download-bigcolor.sh。之后,可以使用一个命令完成转换:

python3 colorize_real.py --path_ckpt=ckpts/bigcolor --path_input=images_gray --epoch=11 --type_resize=powerof --seed=-1 --device=cpu

此处的path_ckpt是指向预训练模型的路径,images_gray是包含源图像的文件夹。结果如下:

最后

图像着色是一个有趣的话题,正如我们所看到的,不同的方法和架构是可能的。从准确性的角度来看,事情也很复杂。通常,黑白照片不再有颜色信息,因此神经网络只能根据之前训练的图像来猜测输出结果。例如,这是我用来测试的原始图像:

这是相同的图像,转换为黑白:

这是使用DeOldify制作的图像:

树是绿色的,天空是蓝色的,这已经挺不错了。但是,不仅DeOldify,而且其他经过测试的项目都无法正确确定百叶窗的颜色。在大多数情况下,这些结果已经足够好了。

相关推荐

【Docker 新手入门指南】第十章:Dockerfile

Dockerfile是Docker镜像构建的核心配置文件,通过预定义的指令集实现镜像的自动化构建。以下从核心概念、指令详解、最佳实践三方面展开说明,帮助你系统掌握Dockerfile的使用逻...

Windows下最简单的ESP8266_ROTS_ESP-IDF环境搭建与腾讯云SDK编译

前言其实也没啥可说的,只是我感觉ESP-IDF对新手来说很不友好,很容易踩坑,尤其是对业余DIY爱好者搭建环境非常困难,即使有官方文档,或者网上的其他文档,但是还是很容易踩坑,多研究,记住两点就行了,...

python虚拟环境迁移(python虚拟环境conda)

主机A的虚拟环境向主机B迁移。前提条件:主机A和主机B已经安装了virtualenv1.主机A操作如下虚拟环境目录:venv进入虚拟环境:sourcevenv/bin/active(1)记录虚拟环...

Python爬虫进阶教程(二):线程、协程

简介线程线程也叫轻量级进程,它是一个基本的CPU执行单元,也是程序执行过程中的最小单元,由线程ID、程序计数器、寄存器集合和堆栈共同组成。线程的引入减小了程序并发执行时的开销,提高了操作系统的并发性能...

基于网络安全的Docker逃逸(docker)

如何判断当前机器是否为Docker容器环境Metasploit中的checkcontainer模块、(判断是否为虚拟机,checkvm模块)搭配学习教程1.检查根目录下是否存在.dockerenv文...

Python编程语言被纳入浙江高考,小学生都开始学了

今年9月份开始的新学期,浙江省三到九年级信息技术课将同步替换新教材。其中,新初二将新增Python编程课程内容。新高一信息技术编程语言由VB替换为Python,大数据、人工智能、程序设计与算法按照教材...

CentOS 7下安装Python 3.10的完整过程

1.安装相应的编译工具yum-ygroupinstall"Developmenttools"yum-yinstallzlib-develbzip2-develope...

如何在Ubuntu 20.04上部署Odoo 14

Odoo是世界上最受欢迎的多合一商务软件。它提供了一系列业务应用程序,包括CRM,网站,电子商务,计费,会计,制造,仓库,项目管理,库存等等,所有这些都无缝集成在一起。Odoo可以通过几种不同的方式进...

Ubuntu 系统安装 PyTorch 全流程指南

当前环境:Ubuntu22.04,显卡为GeForceRTX3080Ti1、下载显卡驱动驱动网站:https://www.nvidia.com/en-us/drivers/根据自己的显卡型号和...

spark+python环境搭建(python 环境搭建)

最近项目需要用到spark大数据相关技术,周末有空spark环境搭起来...目标spark,python运行环境部署在linux服务器个人通过vscode开发通过远程python解释器执行代码准备...

centos7.9安装最新python-3.11.1(centos安装python环境)

centos7.9安装最新python-3.11.1centos7.9默认安装的是python-2.7.5版本,安全扫描时会有很多漏洞,比如:Python命令注入漏洞(CVE-2015-2010...

Linux系统下,五大步骤安装Python

一、下载Python包网上教程大多是通过官方地址进行下载Python的,但由于国内网络环境问题,会导致下载很慢,所以这里建议通过国内镜像进行下载例如:淘宝镜像http://npm.taobao.or...

centos7上安装python3(centos7安装python3.7.2一键脚本)

centos7上默认安装的是python2,要使用python3则需要自行下载源码编译安装。1.安装依赖yum-ygroupinstall"Developmenttools"...

利用本地数据通过微调方式训练 本地DeepSeek-R1 蒸馏模型

网络上相应的教程基本都基于LLaMA-Factory进行,本文章主要顺着相应的教程一步步实现大模型的微调和训练。训练环境:可自行定义,mac、linux或者window之类的均可以,本文以ma...

【法器篇】天啦噜,库崩了没备份(天啦噜是什么意思?)

背景数据库没有做备份,一天突然由于断电或其他原因导致无法启动了,且设置了innodb_force_recovery=6都无法启动,里面的数据怎么才能恢复出来?本例采用解析建表语句+表空间传输的方式进行...