百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

一文上手最新Tensorflow2.0系列|“tf.keras”API 使用

bigegpt 2024-08-08 12:05 2 浏览

Keras是一个基于Python编写的高层神经网络API,Keras强调用户友好性、模块化以及易扩展等,其后端可以采用TensorFlow、Theano以及CNTK,目前大多是以TensorFlow作为后端引擎。考虑到Keras优秀的特性以及它的受欢迎程度,TensorFlow将Keras的代码吸收了进来,并将其作为高级API提供给用户使用。“tf.keras”不强调原来Keras的后端可互换性,而是在符合Keras标准的基础上让其与TensorFlow结合的更紧密(例如支持TensorFlow的eager execution模式,支持“tf.data”,以及支持TPU训练等)。“tf.keras”提高了TensorFlow的易用性,同时也保持了TensorFlow的灵活性和性能。

1. 基本模型的搭建和训练

对于一些基本的网络模型,我们可以使用“tf.keras.Sequential”来创建,通过这种方式创建的模型又称为“顺序模型”,因为这种方式创建的模型是由多个网络层线性堆叠而成的。

首先导入需要的包:

import tensorflow as tf
from tensorflow.keras import layers

然后我们创建一个Sequential Model:

model = tf.keras.Sequential([
 # 添加一个有64个神经元的全连接层,“input_shape”为该层接受的输# 入数据的维度,“activation”指定该层所用的激活函数
 layers.Dense(64, activation='relu', input_shape=(32,)),
 # 添加第二个网络层
 layers.Dense(64, activation='relu'),
 # 添加一个softmax层作为输出层,该层有十个单元
 layers.Dense(10, activation='softmax'),
 ])

上面的代码中,我们在定义这个顺序模型的同时添加了相应的网络层,除此之外我们也可以使用“add”方法逐层的添加:

model = tf.keras.Sequential()
model.add(layers.Dense(64, activation='relu', input_shape=(32,)))
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(10, activation='softmax'))

“tf.keras.layers”用于生成网络层,包括全连接层(tf.keras.layers.Dense())、Dropout层(tf.keras.layers.Dropout)以及卷积网络层(例如二维卷积:tf.keras.layers.Conv2D)等等。创建好网络结构后,我们需要对网络进行编译:

model.compile(optimizer=tf.keras.optimizers.Adam(0.001),
 loss='categorical_crossentropy',
 metrics=['accuracy'])

在编译模型的时候我们需要设置一些必须的参数。例如“optimizer”用来指定我们想使用的优化器以及设定优化器的学习率。例如Adam优化器“tf.keras.optimizer.Adam”、SGD优化器“tf.keras.optimizer.SGD”等,在15行代码中我们使用了Adam优化器,并设置了学习率为“0.001”。

“loss”参数用来设置模型的损失函数(又称目标函数),例如均方误差损失函数(mean_squared_error)、对数损失函数(binary_ crossentropy)以及多分类的对数损失函数(categorical_crossentropy)等等。

“metrics”用来设定模型的评价函数,模型的评价函数与损失函数相似,不过评价函数只用来显示给用户查看,并不用于模型的训练。除了自带的一些评价函数以外,我们还可以自定义评价函数。

编译好模型之后我们就可以开始训练了,这里我们使用numpy生成一组随机数作为训练数据:

import numpy as np
data = np.random.random((1000, 32))
labels = np.random.random((1000, 10))
print(data[0])
print(labels[0])
model.fit(data, labels, epochs=2, batch_size=32)

代码中我们首先随机生成了样本数据和类标。使用“model.fit”来执行模型的训练,其中参数“data”和“labels”分别为训练数据和类标,“epochs”为训练的回合数(一个回合即在全量数据集上训练一次),“batch_size”为训练过程中每一个批次数据的大小。输出结果:


在训练模型的工程中,为了更好地调节参数,方便模型的选择和优化,我们通常会准备一个验证集,这里我们同样随机生成一个验证集:

val_data = np.random.random((100, 32))
val_labels = np.random.random((100, 10))
 
model.fit(data, labels, epochs=2, batch_size=50,
 validation_data=(val_data, val_labels))

输出结果:


和上图相比,这里多了“val_loss”和“val_accuracy”,分别为验证集上的损失和准确率。

上面的例子中我们直接在NumPy数据上训练的模型,我们也可以使用“tf.data”将其转为“Dataset”后再传递给模型去训练:

# 创建训练集Dataset
dataset = tf.data.Dataset.from_tensor_slices((data, labels))
dataset = dataset.batch(50)
# 创建验证集Dataset
val_dataset = tf.data.Dataset.from_tensor_slices((val_data, val_labels))
val_dataset = val_dataset.batch(50)
model.fit(dataset, epochs=2, validation_data=val_dataset)

模型训练好之后,我们希望用测试集去对模型进行评估,这里我们可以使用“model.evaluate”对模型进行评估:

# 模型评估,测试集为NumPy数据
model.evaluate(data, labels, batch_size=50)
# 模型评估,测试集为Dataset数据
model.evaluate(dataset, steps=30)

结果:


最后我们可以使用“model.predict”对新的数据进行预测:

result = model.predict(data, batch_size=50)
print(result[0])

输出结果:


2. 搭建高级模型

2.1. 函数式API

对于一些基本的网络结构,我们可以使用“tf.keras.Sequential”来搭建,但更多的时候我们面临的是一些比较复杂的网络结构。例如模型可能有多输入或多输出,模型中的一些网络层需要共享等等。对于这种网络模型的结构较为复杂的情况,我们需要使用到函数式API。

我们实现一个简单的例子:

# 单独的一个输入层
inputs = tf.keras.Input(shape=(32,))
# 网络层可以像函数一样被调用,其接收和输出的均为张量
x = layers.Dense(64, activation='relu')(inputs)
x = layers.Dense(64, activation='relu')(x)
# 输出层
predictions = layers.Dense(10, activation='softmax')(x)

接下来使用上面定义的网络层来创建模型:

# 创建模型
model = tf.keras.Model(inputs=inputs, outputs=predictions)
# 编译模型
model.compile(optimizer=tf.keras.optimizers.RMSprop(0.001),
 loss='categorical_crossentropy',
 metrics=['accuracy'])
# 训练模型
model.fit(data, labels, epochs=2, batch_size=50)
 

2.2. 实现自定义的模型类和网络层

通过继承“tf.keras.Model”和“tf.keras.layers.Layer”我们可以实现自定义的模型类以及网络层,这为我们构建自己的网络结构提供了非常好的灵活性。例如我们定义一个简单的前馈网络模型:

class MyModel(tf.keras.Model):
 
def __init__(self, num_classes=10):
 super(MyModel, self).__init__(name='my_model')
 # 分类任务的类别数
 self.num_classes = num_classes
 # 定义我们自己的网络层
 self.dense_1 = layers.Dense(32, activation='relu')
 self.dense_2 = layers.Dense(num_classes, activation='sigmoid')
 
def call(self, inputs):
 # 使用“__init__”方法中定义的网络层来构造网络的前馈过程
 x = self.dense_1(inputs)
 return self.dense_2(x)

我们需要在“__init__”方法中定义好我们模型中所有的网络层,并作为模型类的属性。在“call”方法中我们可以定义模型的正向传递过程。之后就可以调用这个模型。

model = MyModel(num_classes=10)
# 编译模型
model.compile(optimizer=tf.keras.optimizers.RMSprop(0.001),
loss='categorical_crossentropy',
metrics=['accuracy'])
# 训练模型
model.fit(data, labels, batch_size=50, epochs=5)

以上是我们自定义一个简单的网络模型的例子,通过继承“tf.keras.layers.Layer”类我们还可以实现自定义的网络层。事实上除了研究人员,对于绝大多数用户来说,我们一般不会需要自定义模型类或网络层。

3. 回调函数

回调函数会在模型的训练阶段被执行,可以用来自定义模型训练期间的一些行为,例如输出模型内部的状态等。我们可以自己编写回调函数也可以使用内置的一些函数,例如:

  • tf.keras.callbacks.ModelCheckpoint:定期保存模型。
  • tf.keras.callbacks.LearningRateScheduler:动态的改变学习率。
  • tf.keras.callbacks.EarlyStopping:当模型在验证集上的性能不再提升时终止训练。
  • tf.keras.callbacks.TensorBoard:使用TensorBoard来监测模型。

回调函数的使用方式如下:

callbacks = [
# 当验证集上的损失“val_loss”连续两个训练回合(epoch)都没有变化,则提前结束训练
tf.keras.callbacks.EarlyStopping(patience=2, monitor='val_loss'),
# 使用TensorBoard保存训练的记录,保存到“./logs”目录中
tf.keras.callbacks.TensorBoard(log_dir='./logs')
]
model.fit(data, labels, batch_size=50, epochs=5, callbacks=callbacks,
validation_data=(val_data, val_labels))

4. 模型的保存和恢复

我们可以使用“model.save()”和“tf.keras.models.load_model()”来保存和加载由“tf.keras”训练的模型:

# 创建一个简单的模型
model = tf.keras.Sequential([
 layers.Dense(10, activation='softmax', input_shape=(32,)),
 layers.Dense(10, activation='softmax')
])
model.compile(optimizer='rmsprop',
 loss='categorical_crossentropy',
 metrics=['accuracy'])
model.fit(data, labels, batch_size=32, epochs=5)
 
# 将整个模型保存为HDF5文件
model.save('my_model')
# 加载保存的模型
model = tf.keras.models.load_model('my_model')

通过“model.save()”保存的是一个完整的模型信息,包括模型的权重以及结构等。除了保存完整的模型,我们还可以单独保存模型的权重信息或者模型的结构。

# 将模型的权重参数保存为HDF5文件
model.save_weights('my_model.h5', save_format='h5')
# 重新加载
model.load_weights('my_model.h5')
 
# 将模型的结构保存为JSON文件
json_string = model.to_json()

相关推荐

【Docker 新手入门指南】第十章:Dockerfile

Dockerfile是Docker镜像构建的核心配置文件,通过预定义的指令集实现镜像的自动化构建。以下从核心概念、指令详解、最佳实践三方面展开说明,帮助你系统掌握Dockerfile的使用逻...

Windows下最简单的ESP8266_ROTS_ESP-IDF环境搭建与腾讯云SDK编译

前言其实也没啥可说的,只是我感觉ESP-IDF对新手来说很不友好,很容易踩坑,尤其是对业余DIY爱好者搭建环境非常困难,即使有官方文档,或者网上的其他文档,但是还是很容易踩坑,多研究,记住两点就行了,...

python虚拟环境迁移(python虚拟环境conda)

主机A的虚拟环境向主机B迁移。前提条件:主机A和主机B已经安装了virtualenv1.主机A操作如下虚拟环境目录:venv进入虚拟环境:sourcevenv/bin/active(1)记录虚拟环...

Python爬虫进阶教程(二):线程、协程

简介线程线程也叫轻量级进程,它是一个基本的CPU执行单元,也是程序执行过程中的最小单元,由线程ID、程序计数器、寄存器集合和堆栈共同组成。线程的引入减小了程序并发执行时的开销,提高了操作系统的并发性能...

基于网络安全的Docker逃逸(docker)

如何判断当前机器是否为Docker容器环境Metasploit中的checkcontainer模块、(判断是否为虚拟机,checkvm模块)搭配学习教程1.检查根目录下是否存在.dockerenv文...

Python编程语言被纳入浙江高考,小学生都开始学了

今年9月份开始的新学期,浙江省三到九年级信息技术课将同步替换新教材。其中,新初二将新增Python编程课程内容。新高一信息技术编程语言由VB替换为Python,大数据、人工智能、程序设计与算法按照教材...

CentOS 7下安装Python 3.10的完整过程

1.安装相应的编译工具yum-ygroupinstall"Developmenttools"yum-yinstallzlib-develbzip2-develope...

如何在Ubuntu 20.04上部署Odoo 14

Odoo是世界上最受欢迎的多合一商务软件。它提供了一系列业务应用程序,包括CRM,网站,电子商务,计费,会计,制造,仓库,项目管理,库存等等,所有这些都无缝集成在一起。Odoo可以通过几种不同的方式进...

Ubuntu 系统安装 PyTorch 全流程指南

当前环境:Ubuntu22.04,显卡为GeForceRTX3080Ti1、下载显卡驱动驱动网站:https://www.nvidia.com/en-us/drivers/根据自己的显卡型号和...

spark+python环境搭建(python 环境搭建)

最近项目需要用到spark大数据相关技术,周末有空spark环境搭起来...目标spark,python运行环境部署在linux服务器个人通过vscode开发通过远程python解释器执行代码准备...

centos7.9安装最新python-3.11.1(centos安装python环境)

centos7.9安装最新python-3.11.1centos7.9默认安装的是python-2.7.5版本,安全扫描时会有很多漏洞,比如:Python命令注入漏洞(CVE-2015-2010...

Linux系统下,五大步骤安装Python

一、下载Python包网上教程大多是通过官方地址进行下载Python的,但由于国内网络环境问题,会导致下载很慢,所以这里建议通过国内镜像进行下载例如:淘宝镜像http://npm.taobao.or...

centos7上安装python3(centos7安装python3.7.2一键脚本)

centos7上默认安装的是python2,要使用python3则需要自行下载源码编译安装。1.安装依赖yum-ygroupinstall"Developmenttools"...

利用本地数据通过微调方式训练 本地DeepSeek-R1 蒸馏模型

网络上相应的教程基本都基于LLaMA-Factory进行,本文章主要顺着相应的教程一步步实现大模型的微调和训练。训练环境:可自行定义,mac、linux或者window之类的均可以,本文以ma...

【法器篇】天啦噜,库崩了没备份(天啦噜是什么意思?)

背景数据库没有做备份,一天突然由于断电或其他原因导致无法启动了,且设置了innodb_force_recovery=6都无法启动,里面的数据怎么才能恢复出来?本例采用解析建表语句+表空间传输的方式进行...