百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

详解SoftMax多分类器

bigegpt 2024-08-08 12:06 2 浏览

常见的逻辑回归、SVM等常用于解决二分类问题,对于多个选项的分类问题,比如识别手写数字,它就需要10个分类,同样也可以用逻辑回归或SVM(只是需要多个二分类来组成多分类)。对于多分类的实现,我们还可以使用Softmax函数,它是逻辑回归在 N 个可能不同的值上的推广。

Softmax作用

神经网络的原始输出不是一个概率值,实质上只是输入的数值做了复杂的加权(*w+b)和与非线性处理之后的一个值而已,那么如何将这个输出变为概率分布?这就是Softmax 激活的作用(在某个隐藏层设置激活函数为 softmax)

说明:

  • softmax要求每个样本必须属于某个类别,且所有可能的样本均被覆盖;
  • softmax 要求每个样本必须属于某个类别,并且所有可能的样本均被覆盖;
  • softmax个样本分量之和为 1

当只有两个类别时,与逻辑回归完全相同。为了方便理解Softmax的作用,举个例子来说明。如下图所示,神经网络中包含了输入层(x1---x6),然后通过两个隐藏层处理,最后通过softmax分析器就能得到不同条件下的概率,这里需要分成三个类别,最终会得到y=0、y=1、y=2的概率值。

继续看下面的图,三个输入通过softmax后得到一个数组[0.05 , 0.10 , 0.85],这就是softmax的功能。

计算过程直接看下图,其中即为,三个输入的值分别为3、1、-3,的值为20、2.7、0.05,再分别除以累加和得到最终的概率值,0.88,0.12,0。

可以看到它有多个值,所有值加起来刚好等于1,每个输出都映射到了0到1区间,可以看成是概率问题。

SoftMax代码示例

通过Fashion MNIST 数据集 训练一个Softmax分类器,实现分类功能。Fashion MNIST 数据集是经典 MNIST 数据集的简易替换,MNIST 数据集包含手写数字(0、1、2 等)的图像,这些图像的格式与本文使用的服饰图像的格式相同。Fashion MNIST 比常规 MNIST手写数据集更具挑战性。这两个数据集都相对较小,用于验证某个算法能否如期正常运行。它们都是测试和调试代码的良好起点。

Fashion MNIST 数据集包含 70000 张灰度图像,涵盖 10 个类别。我们将使用 60000 张图像训练网络,并使用 10000 张图像评估经过学习的网络分类图像的准确率。它可以直接从 TensorFlow 直接访问,只需导入和加载数据即可。

训练一个衣物鞋包的分类模型,要求把模型分为10个类别,然后预测某个物体属于某个类别的概率。

step1 添加库引用

#添加库引用
import tensorflow as tf
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

step2 加载数据

# 下载数据集并划分为训练集和测试集
(train_images,train_lables),(test_images,test_labels) = tf.keras.datasets.fashion_mnist.load_data()
print('train_images.shape',train_images.shape)
print('train_labels',train_lables)
print('train_labels.shape',train_lables.shape)
print('test_images.shape',test_images.shape)
print('test_labels.shape',test_labels.shape)
print('test_labels',test_labels)
###########################################

step3 查看数据

plt.imshow(train_images[0]) # 通过切片取出测试集第一张图片查看
plt.show() #如下图所示
np.max(train_images[0]) #查看最大值得出取值范围0-255
print(train_lables[0]) # 查看对应的分类 9代表鞋子

step4 归一化

# 数组中的每个元素都除以255,归一化到0-1
train_image=train_images/255
test_image=test_images/255

step5 建立模型

#全连接模型
model = tf.keras.Sequential()
# 28*28 dense 是 张量为1的数据 映射到另一个张量为1 的数据,不能将2维数据直接进行运算 扁平化操作到1维
model.add(tf.keras.layers.Flatten(input_shape=(28,28))) 
model.add(tf.keras.layers.Dense(128,activation="relu"))
# 最后一层 用softmax 激活 softmax转换10个类别的概率
model.add(tf.keras.layers.Dense(10,activation="softmax"))

step6 查看模型结构

print(model.summary())

参数计算:

100480 = 128*(784+1)

1290 = 10*(128+1)

step7 编译模型

#编译模型 给模型设置优化器,损失函数,度量参数等信息。在tf.keras里,对于多分类问题我们使用categorical_crossentropy(独热编码) 和 sparse_categorical_crossentropy来计算softmax交叉熵,(使用交叉熵来计算两个概率分布的损失)

#############损失函数
##########leable 使用数字编码(1,2,3,4,5....)sparse_categorical_crossentropy (使用读热编码)
##########lable categorical_crossentropy
model.compile(optimizer="adam",
loss="sparse_categorical_crossentropy",
metrics=["acc"]#度量参数
)

step8 训练模型

model.fit(train_image,train_lables,epochs=100)

step9 模型评估

# 使用测试集进行评价
model.evaluate(test_image,test_labels)

相关推荐

【Docker 新手入门指南】第十章:Dockerfile

Dockerfile是Docker镜像构建的核心配置文件,通过预定义的指令集实现镜像的自动化构建。以下从核心概念、指令详解、最佳实践三方面展开说明,帮助你系统掌握Dockerfile的使用逻...

Windows下最简单的ESP8266_ROTS_ESP-IDF环境搭建与腾讯云SDK编译

前言其实也没啥可说的,只是我感觉ESP-IDF对新手来说很不友好,很容易踩坑,尤其是对业余DIY爱好者搭建环境非常困难,即使有官方文档,或者网上的其他文档,但是还是很容易踩坑,多研究,记住两点就行了,...

python虚拟环境迁移(python虚拟环境conda)

主机A的虚拟环境向主机B迁移。前提条件:主机A和主机B已经安装了virtualenv1.主机A操作如下虚拟环境目录:venv进入虚拟环境:sourcevenv/bin/active(1)记录虚拟环...

Python爬虫进阶教程(二):线程、协程

简介线程线程也叫轻量级进程,它是一个基本的CPU执行单元,也是程序执行过程中的最小单元,由线程ID、程序计数器、寄存器集合和堆栈共同组成。线程的引入减小了程序并发执行时的开销,提高了操作系统的并发性能...

基于网络安全的Docker逃逸(docker)

如何判断当前机器是否为Docker容器环境Metasploit中的checkcontainer模块、(判断是否为虚拟机,checkvm模块)搭配学习教程1.检查根目录下是否存在.dockerenv文...

Python编程语言被纳入浙江高考,小学生都开始学了

今年9月份开始的新学期,浙江省三到九年级信息技术课将同步替换新教材。其中,新初二将新增Python编程课程内容。新高一信息技术编程语言由VB替换为Python,大数据、人工智能、程序设计与算法按照教材...

CentOS 7下安装Python 3.10的完整过程

1.安装相应的编译工具yum-ygroupinstall"Developmenttools"yum-yinstallzlib-develbzip2-develope...

如何在Ubuntu 20.04上部署Odoo 14

Odoo是世界上最受欢迎的多合一商务软件。它提供了一系列业务应用程序,包括CRM,网站,电子商务,计费,会计,制造,仓库,项目管理,库存等等,所有这些都无缝集成在一起。Odoo可以通过几种不同的方式进...

Ubuntu 系统安装 PyTorch 全流程指南

当前环境:Ubuntu22.04,显卡为GeForceRTX3080Ti1、下载显卡驱动驱动网站:https://www.nvidia.com/en-us/drivers/根据自己的显卡型号和...

spark+python环境搭建(python 环境搭建)

最近项目需要用到spark大数据相关技术,周末有空spark环境搭起来...目标spark,python运行环境部署在linux服务器个人通过vscode开发通过远程python解释器执行代码准备...

centos7.9安装最新python-3.11.1(centos安装python环境)

centos7.9安装最新python-3.11.1centos7.9默认安装的是python-2.7.5版本,安全扫描时会有很多漏洞,比如:Python命令注入漏洞(CVE-2015-2010...

Linux系统下,五大步骤安装Python

一、下载Python包网上教程大多是通过官方地址进行下载Python的,但由于国内网络环境问题,会导致下载很慢,所以这里建议通过国内镜像进行下载例如:淘宝镜像http://npm.taobao.or...

centos7上安装python3(centos7安装python3.7.2一键脚本)

centos7上默认安装的是python2,要使用python3则需要自行下载源码编译安装。1.安装依赖yum-ygroupinstall"Developmenttools"...

利用本地数据通过微调方式训练 本地DeepSeek-R1 蒸馏模型

网络上相应的教程基本都基于LLaMA-Factory进行,本文章主要顺着相应的教程一步步实现大模型的微调和训练。训练环境:可自行定义,mac、linux或者window之类的均可以,本文以ma...

【法器篇】天啦噜,库崩了没备份(天啦噜是什么意思?)

背景数据库没有做备份,一天突然由于断电或其他原因导致无法启动了,且设置了innodb_force_recovery=6都无法启动,里面的数据怎么才能恢复出来?本例采用解析建表语句+表空间传输的方式进行...