百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

可直接使用的图片配准实例

bigegpt 2024-08-09 11:19 2 浏览

用随机采样一致性方法求单应性矩阵H

先看结果:


需要配准的图片为img1 和 img2,如下图:


需要配准,首先需要找关键点:



注意:这里显示的关键点,是配准后,发现可以找到匹配点的关键点,并没有显示原始关键点。

然后用随机一致性(RANRAC)方法,找到这些关键点最合适的配对,如下图:


配准后,得到单应性矩阵H:



然后使用单应性矩阵对img1进行变换:


变换后,发现原img1上的海面部分不见了,为了将海面部分也显示出来,所以,我们先将img1右移640个像素,然后再通过H变换,得:

将变换后的图像与img2相加,就会发现这两张图片已经配准了。

因为img1是先右移640像素,才进行H变换的。

所以,这里,我们也要将img2右移640像素。


下面我们看看详细的原理:


Affine invariant feature-based image matching sample.
This sample is similar to find_obj.py, but uses the affine transformation
space sampling technique, called ASIFT [1]. While the original implementation
is based on SIFT, you can try to use SURF or ORB detectors instead. Homography RANSAC
is used to reject outliers. Threading is used for faster affine sampling.

[1] http://www.ipol.im/pub/algo/my_affine_sift/

USAGE
  asift.py [--feature=<sift|surf|orb|brisk>[-flann]] [ <image1> <image2> ]

  --feature  - Feature to use. Can be sift, surf, orb or brisk. Append '-flann'
               to feature name to use Flann-based matcher instead bruteforce.

  Press left mouse button on a feature point to see its matching point.

affine transformation space sampling technique:刚体变换空间采样技术

Homography RANSAC 用来拒绝例外点。

所以,这里面涉及到两个技术:一个是SIFT,一个是Homography RANSAC

要说清楚Homography RANSAC,就需要先了解RANSAC



这个思路其实是估计出了k个模型,在这k个模型中,有95%的概率,存在一个模型符合所有的正确数据(局内点)。

这里解释一下这个局内点与局外点。

局外点就是噪声数据。

局内点就是正常数据。

所以,RANSAC方法通过概率的形式,去除了噪声点对模型的影响。并且能够判断出来,哪些是局外点。

说清楚了RANSAC,我们再看Homography RANSAC

Homography:单应性。这是个啥?



这里:单应,单独对应,一一对应,点与点是一一对应的关系。


图中的H就是单应行矩阵。而用单应性矩阵乘以世界坐标系下点的坐标(X,Y,Z)就会得到像素坐标系下的坐标(u,v),而这就是单应行变换。

我们看看单应性变换能做的事情:






我们做图像匹配的时候,就是找两幅图上像素点之间的单应行矩阵。

找到这个,两幅图的匹配就搞定了。

匹配的过程:

1 找到a,b图上的关键点集合A,B。

2 求集合A和集合B的单应性矩阵。

3 利用单应行矩阵,将b图转化,然后叠加在A图上。



单应性矩阵求解

这显然有9个未知量。

因为我们有集合A,B是已知的,

我们可以利用这些点,建立方程组,然后求解方程组的方式求取得到这9个值。

也可以用矩阵的计算求取得到单应性矩阵的值。

也可以通过随机采样一致性(RANSC)方法进行竞选,选出一个最好的模型。

参考:
https://blog.csdn.net/qq_45467083/article/details/105457198?utm_medium=distribute.pc_relevant.none-task-blog-2~default~baidujs_title~default-0.control&spm=1001.2101.3001.4242

参考:
https://blog.csdn.net/lhanchao/article/details/52849446

具体实现代码如下:

#!/usr/bin/env python

'''
Affine invariant feature-based image matching sample.

This sample is similar to find_obj.py, but uses the affine transformation
space sampling technique, called ASIFT [1]. While the original implementation
is based on SIFT, you can try to use SURF or ORB detectors instead. Homography RANSAC
is used to reject outliers. Threading is used for faster affine sampling.

[1] http://www.ipol.im/pub/algo/my_affine_sift/

USAGE
asift.py [--feature=<sift|surf|orb|brisk>[-flann]] [ <image1> <image2> ]

--feature - Feature to use. Can be sift, surf, orb or brisk. Append '-flann'
to feature name to use Flann-based matcher instead bruteforce.

Press left mouse button on a feature point to see its matching point.
'''

# Python 2/3 compatibility
from __future__ import print_function

import numpy as np
import cv2 as cv

# built-in modules
import itertools as it
from multiprocessing.pool import ThreadPool

# local modules
from common import Timer
from find_obj import init_feature, filter_matches, explore_match


def affine_skew(tilt, phi, img, mask=None):
'''
affine_skew(tilt, phi, img, mask=None) -> skew_img, skew_mask, Ai

Ai - is an affine transform matrix from skew_img to img
'''
h, w = img.shape[:2]
if mask is None:
mask = np.zeros((h, w), np.uint8)
mask[:] = 255
A = np.float32([[1, 0, 0], [0, 1, 0]])
if phi != 0.0:
phi = np.deg2rad(phi)
s, c = np.sin(phi), np.cos(phi)
A = np.float32([[c,-s], [ s, c]])
corners = [[0, 0], [w, 0], [w, h], [0, h]]
tcorners = np.int32( np.dot(corners, A.T) )
x, y, w, h = cv.boundingRect(tcorners.reshape(1,-1,2))
A = np.hstack([A, [[-x], [-y]]])
img = cv.warpAffine(img, A, (w, h), flags=cv.INTER_LINEAR, borderMode=cv.BORDER_REPLICATE)
if tilt != 1.0:
s = 0.8*np.sqrt(tilt*tilt-1)
img = cv.GaussianBlur(img, (0, 0), sigmaX=s, sigmaY=0.01)
img = cv.resize(img, (0, 0), fx=1.0/tilt, fy=1.0, interpolation=cv.INTER_NEAREST)
A[0] /= tilt
if phi != 0.0 or tilt != 1.0:
h, w = img.shape[:2]
mask = cv.warpAffine(mask, A, (w, h), flags=cv.INTER_NEAREST)
Ai = cv.invertAffineTransform(A)
return img, mask, Ai


def affine_detect(detector, img, mask=None, pool=None):
'''
affine_detect(detector, img, mask=None, pool=None) -> keypoints, descrs

Apply a set of affine transformations to the image, detect keypoints and
reproject them into initial image coordinates.
See http://www.ipol.im/pub/algo/my_affine_sift/ for the details.

ThreadPool object may be passed to speedup the computation.
'''
params = [(1.0, 0.0)]
for t in 2**(0.5*np.arange(1,6)):
for phi in np.arange(0, 180, 72.0 / t):
params.append((t, phi))

def f(p):
t, phi = p
timg, tmask, Ai = affine_skew(t, phi, img)
keypoints, descrs = detector.detectAndCompute(timg, tmask)
for kp in keypoints:
x, y = kp.pt
kp.pt = tuple( np.dot(Ai, (x, y, 1)) )
if descrs is None:
descrs = []
return keypoints, descrs

keypoints, descrs = [], []
if pool is None:
ires = it.imap(f, params)
else:
ires = pool.imap(f, params)

for i, (k, d) in enumerate(ires):
print('affine sampling: %d / %d\r' % (i+1, len(params)), end='')
keypoints.extend(k)
descrs.extend(d)

print()
return keypoints, np.array(descrs)


def main():
import sys, getopt
opts, args = getopt.getopt(sys.argv[1:], '', ['feature='])
opts = dict(opts)
feature_name = opts.get('--feature', 'brisk-flann')
try:
fn1, fn2 = args
except:
fn1 = 'aero3.jpg'
fn2 = 'aero1.jpg'

img1 = cv.imread(cv.samples.findFile(fn1), cv.IMREAD_GRAYSCALE)
img2 = cv.imread(cv.samples.findFile(fn2), cv.IMREAD_GRAYSCALE)
detector, matcher = init_feature(feature_name)

if img1 is None:
print('Failed to load fn1:', fn1)
sys.exit(1)

if img2 is None:
print('Failed to load fn2:', fn2)
sys.exit(1)

if detector is None:
print('unknown feature:', feature_name)
sys.exit(1)

print('using', feature_name)

pool=ThreadPool(processes = cv.getNumberOfCPUs())
kp1, desc1 = affine_detect(detector, img1, pool=pool)
kp2, desc2 = affine_detect(detector, img2, pool=pool)
print('img1 - %d features, img2 - %d features' % (len(kp1), len(kp2)))

def match_and_draw(win):
with Timer('matching'):
raw_matches = matcher.knnMatch(desc1, trainDescriptors = desc2, k = 2) #2
p1, p2, kp_pairs = filter_matches(kp1, kp2, raw_matches)
if len(p1) >= 4:
H, status = cv.findHomography(p1, p2, cv.RANSAC, 5.0)
#Hi = cv.invert(H)
print(H)
# 为了适应图片1变换后的图像大小,我们将原图平移,并放到更大的画布上
H2 = np.array([[1.,0.,640],[0.,1.,0.],[0.,0.,1.]])
img1H=cv.warpPerspective(img1,H,[img1.shape[1],img1.shape[0]])

# 将img1平移并利用单应性矩阵进行变换
img1H2=cv.warpPerspective(img1,np.dot(H2,H),[640+2*img1.shape[1],img1.shape[0]])
# 将图片2平移
img2H2=cv.warpPerspective(img2,H2,[640+2*img2.shape[1],img2.shape[0]])
#img2H=cv.warpPerspective(img2,Hi,[img1.shape[1],img1.shape[0]])
cv.imshow('img1H',np.vstack([img1,img1H,img2]))
cv.waitKey()
cv.imshow('img1H2',np.vstack([img1H2]))
cv.waitKey()
cv.imshow('img2H2',np.vstack([img2H2]))
cv.waitKey()
cv.imshow('img-addweight',cv.addWeighted(img1H2,0.5,img2H2,0.5,0))
cv.waitKey()
print('%d / %d inliers/matched' % (np.sum(status), len(status)))
# do not draw outliers (there will be a lot of them)
kp_pairs = [kpp for kpp, flag in zip(kp_pairs, status) if flag]
else:
H, status = None, None
print('%d matches found, not enough for homography estimation' % len(p1))

explore_match(win, img1, img2, kp_pairs, None, H)


match_and_draw('affine find_obj')
cv.waitKey()
print('Done')


if __name__ == '__main__':
print(__doc__)
main()
cv.destroyAllWindows()

相关推荐

10w qps缓存数据库——Redis(redis缓存调优)

一、Redis数据库介绍:Redis:非关系型缓存数据库nosql:非关系型数据库没有表,没有表与表之间的关系,更不存在外键存储数据的形式为key:values的形式c语言写的服务(监听端口),用来存...

Redis系列专题4--Redis配置参数详解

本文基于windowsX64,3.2.100版本讲解,不同版本默认配置参数不同在Redis中,Redis的根目录中有一个配置文件(redis.conf,windows下为redis.windows....

开源一夏 | 23 张图,4500 字从入门到精通解释 Redis

redis是目前出场率最高的NoSQL数据库,同时也是一个开源的数据结构存储系统,在缓存、数据库、消息处理等场景使用的非常多,本文瑞哥就带着大家用一篇文章入门这个强大的开源数据库——Redis。...

redis的简单与集群搭建(redis建立集群)

Redis是什么?是开源免费用c语言编写的单线程高性能的(key-value形式)内存数据库,基于内存运行并支持持久化的nosql数据库作用主要用来做缓存,单不仅仅是做缓存,比如:redis的计数器生...

推荐几个好用Redis图形化客户端工具

RedisPlushttps://gitee.com/MaxBill/RedisPlusRedisPlus是为Redis可视化管理开发的一款开源免费的桌面客户端软件,支持Windows、Linux...

关于Redis在windows上运行及fork函数问题

Redis在将数据库进行持久化操作时,需要fork一个进程,但是windows并不支持fork,导致在持久化操作期间,Redis必须阻塞所有的客户端直至持久化操作完成。微软的一些工程师花费时间在解决在...

你必须懂的Redis十大应用场景(redis常见应用场景)

Redis作为一款高性能的键值存储数据库,在互联网业务中有着广泛的应用。今天,我们就来详细盘点一下Redis的十大常用业务场景,并附上Golang的示例代码和简图,帮助大家更好地理解和应用Redis。...

极简Redis配置(redis的配置)

一、概述Redis的配置文件位于Redis安装目录下,文件名为redis.conf(Windows名为redis.windows.conf,linux下的是redis.conf)你可以通过C...

什么是redis,怎么启动及如何压测

从今天起咱们一起来学习一下关于“redis监控与调优”的内容。一、Redis介绍Redis是一种高级key-value数据库。它跟memcached类似,不过数据可以持久化,而且支持的数据类型很丰富。...

一款全新Redis UI可视化管理工具,支持WebUI和桌面——P3X Redis UI

介绍P3XRedisUI这是一个非常实用的RedisGUI,提供响应式WebUI访问或作为桌面应用程序使用,桌面端是跨平台的,而且完美支持中文界面。Githubhttps://github....

windows系统的服务器快速部署java项目环境地址

1、mysql:https://dev.mysql.com/downloads/mysql/(msi安装包)2、redis:https://github.com/tporadowski/redis/r...

window11 下 redis 下载与安装(windows安装redis客户端)

#热爱编程是一种怎样的体验#window11下redis下载与安装1)各个版本redis下载(windows)https://github.com/MicrosoftArchive/r...

一款轻量级的Redis客户端工具,贼好用!

使用命令行来操作Redis是一件非常麻烦的事情,我们一般会选用客户端工具来操作Redis。今天给大家分享一款好用的Redis客户端工具TinyRDM,它的界面清新又优雅,希望对大家有所帮助!简介Ti...

一个.NET开发且功能强大的Windows远程控制系统

我们致力于探索、分享和推荐最新的实用技术栈、开源项目、框架和实用工具。每天都有新鲜的开源资讯等待你的发现!项目介绍SiMayRemoteMonitorOS是一个基于Windows的远程控制系统,完...

Redis客户端工具详解(4款主流工具)

大家好,我是mikechen。Redis是大型架构的基石,也是大厂最爱考察内容,今天就给大家重点详解4款Redis工具@mikechen本篇已收于mikechen原创超30万字《阿里架构师进阶专题合集...