百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

计算机视觉目标检测的框架与过程

bigegpt 2024-08-19 12:05 52 浏览

个人接触机器视觉的时间不长,对于机器学习在目标检测的大体的框架和过程有了一个初步的了解,不知道对不对,如有错误,请各位大牛不吝指点。

目标的检测大体框架:

目标检测分为以下几个步骤:

1、训练分类器所需训练样本的创建:

训练样本包括正样本和负样本;其中正例样本是指待检目标样本(例如人脸或汽车等),负样本指其它不包含目标的任意图片(如背景等),所有的样本图片都被归一化为同样的尺寸大小(例如,20x20)。

2、特征提取:

由图像或波形所获得的数据量是相当大的。例如,一个文字图像可以有几千个数据,一个心电图波形也可能有几千个数据。为了有效地实现分类识别,就要对原始数据进行变换,得到最能反映分类本质的特征。这就是特征选择和提取的过程。一般我们把原始数据组成的空间叫测量空间,把分类识别赖以进行的空间叫做特征空间,通过变换,可把在维数较高的测量空间中表示的模式变为在维数较低的特征空间中表示的模式。

3、用训练样本来训练分类器:

这得先明白分类器是什么?百度百科的解释是:“使待分对象被划归某一类而使用的分类装置或数学模型。”我觉得可以怎么理解,举个例子:人脑本身也算一个分类器(只是它强大到超乎想象而已),人对事物的识别本身也是一个分类的过程。人在成长或者学习过程中,会通过观察A类事物的多个具体事例来得到对A类事物性质和特点的认识,然后以后遇到一个新的物体时,人脑会根据这个事物的特征是否符合A类事物性质和特点,而将其分类为A类或者非A类。(这里只是用简单的二分类问题来说明)。那么训练分类器可以理解为分类器(大脑)通过对正样本和负样本的观察(学习),使其具有对该目标的检测能力(未来遇到该目标能认出来)。

从数学来表达,分类器就是一个函数y=f(x),x是某个事物的特征,y是类别,通俗的说就是例如,你输入张三的特征x1,分类器就给你认出来这个是张三y1,你输入李四的特征x2,它就给你认出来这个是李四y2。那么分类器是个函数,它的数学模型是什么呢?一次函数y=kx+b?高次函数?等等好复杂的都有,我们需要先确定它的模型;确定了模型后,模型是不是有很多参数呢?例如上面的一次函数y=kx+b的k和b,高斯函数的均值和方差等等。这个就可以通过什么最小化分类误差、最小化惩罚啊等等方法来确定,其实训练分类器好像就是找这些参数,使得达到最好的分类效果。呵呵,不知道自己说得对不对。

另外,为了使分类检测准确率较好,训练样本一般都是成千上万的,然后每个样本又提取出了很多个特征,这样就产生了很多的的训练数据,所以训练的过程一般都很耗时的。

4、利用训练好的分类器进行目标检测

得到了分类器就可以用来对你输入的图像进行分类了,也就是在图像中检测是否存在你想要检测的目标。一般的检测过程是这样的:用一个扫描子窗口在待检测的图像中不断的移位滑动,子窗口每到一个位置,就会计算出该区域的特征,然后用我们训练好的分类器对该特征进行筛选,判定该区域是否为目标。然后因为目标在图像的大小可能和你训练分类器时使用的样本图片大小不一样,所以就需要对这个扫描的子窗口变大或者变小(或者将图像变小),再在图像中滑动,再匹配一遍。

5、学习和改进分类器

现在如果样本数较多,特征选取和分类器算法都比较好的情况下,分类器的检测准确度都挺高的了。但也会有误检的时候。所以更高级点的话就是加入了学习或者自适应,也就是说你把这张图分类错误了,我就把这张图拿出来,标上其正确的类别,再放到样本库中去训练分类器,让分类器更新、醒悟,下次别再给我弄错了。你怎么知道他弄错了?我理解是:大部分都是靠先验知识(例如目标本身存在着结构啊或者什么的约束)或者和跟踪(目标一般不会运动得太快)等综合来判断的。

其实上面这个模式分类的过程是适合很多领域的,例如图像啊,语音识别等等。那么这整一个过程关键点在哪呢?

(1)特征选取:

感觉目标比较盛行的有:Haar特征、LBP特征、HOG特征和Shif特征等;他们各有千秋,得视你要检测的目标情况而定,例如:

拳头:纹理特征明显:Haar、LBP(目前有将其和HOG结合);

(2)分类器算法:

感觉目标比较盛行的有:SVM支持向量机、AdaBoost算法等;其中检测行人的一般是HOG特征+SVM,OpenCV中检测人脸的一般是Haar+AdaBoost,OpenCV中检测拳头一般是LBP+ AdaBoost;

在计算机视觉领域,涉及到的特征、算法等等还是非常非常多的,不断有牛人在提出新的东西(简单的哲学+复杂的数学),也不断有牛人在改进以前的东西,然后随着岁月的脚步,科技在不停地狂奔着!

相关推荐

悠悠万事,吃饭为大(悠悠万事吃饭为大,什么意思)

新媒体编辑:杜岷赵蕾初审:程秀娟审核:汤小俊审签:周星...

高铁扒门事件升级版!婚宴上‘冲喜’老人团:我们抢的是社会资源

凌晨两点改方案时,突然收到婚庆团队发来的视频——胶东某酒店宴会厅,三个穿大红棉袄的中年妇女跟敢死队似的往前冲,眼瞅着就要扑到新娘的高额钻石项链上。要不是门口小伙及时阻拦,这婚礼造型团队熬了三个月的方案...

微服务架构实战:商家管理后台与sso设计,SSO客户端设计

SSO客户端设计下面通过模块merchant-security对SSO客户端安全认证部分的实现进行封装,以便各个接入SSO的客户端应用进行引用。安全认证的项目管理配置SSO客户端安全认证的项目管理使...

还在为 Spring Boot 配置类加载机制困惑?一文为你彻底解惑

在当今微服务架构盛行、项目复杂度不断攀升的开发环境下,SpringBoot作为Java后端开发的主流框架,无疑是我们手中的得力武器。然而,当我们在享受其自动配置带来的便捷时,是否曾被配置类加载...

Seata源码—6.Seata AT模式的数据源代理二

大纲1.Seata的Resource资源接口源码2.Seata数据源连接池代理的实现源码3.Client向Server发起注册RM的源码4.Client向Server注册RM时的交互源码5.数据源连接...

30分钟了解K8S(30分钟了解微积分)

微服务演进方向o面向分布式设计(Distribution):容器、微服务、API驱动的开发;o面向配置设计(Configuration):一个镜像,多个环境配置;o面向韧性设计(Resista...

SpringBoot条件化配置(@Conditional)全面解析与实战指南

一、条件化配置基础概念1.1什么是条件化配置条件化配置是Spring框架提供的一种基于特定条件来决定是否注册Bean或加载配置的机制。在SpringBoot中,这一机制通过@Conditional...

一招解决所有依赖冲突(克服依赖)

背景介绍最近遇到了这样一个问题,我们有一个jar包common-tool,作为基础工具包,被各个项目在引用。突然某一天发现日志很多报错。一看是NoSuchMethodError,意思是Dis...

你读过Mybatis的源码?说说它用到了几种设计模式

学习设计模式时,很多人都有类似的困扰——明明概念背得滚瓜烂熟,一到写代码就完全想不起来怎么用。就像学了一堆游泳技巧,却从没下过水实践,很难真正掌握。其实理解一个知识点,就像看立体模型,单角度观察总...

golang对接阿里云私有Bucket上传图片、授权访问图片

1、为什么要设置私有bucket公共读写:互联网上任何用户都可以对该Bucket内的文件进行访问,并且向该Bucket写入数据。这有可能造成您数据的外泄以及费用激增,若被人恶意写入违法信息还可...

spring中的资源的加载(spring加载原理)

最近在网上看到有人问@ContextConfiguration("classpath:/bean.xml")中除了classpath这种还有其他的写法么,看他的意思是想从本地文件...

Android资源使用(android资源文件)

Android资源管理机制在Android的开发中,需要使用到各式各样的资源,这些资源往往是一些静态资源,比如位图,颜色,布局定义,用户界面使用到的字符串,动画等。这些资源统统放在项目的res/独立子...

如何深度理解mybatis?(如何深度理解康乐服务质量管理的5个维度)

深度自定义mybatis回顾mybatis的操作的核心步骤编写核心类SqlSessionFacotryBuild进行解析配置文件深度分析解析SqlSessionFacotryBuild干的核心工作编写...

@Autowired与@Resource原理知识点详解

springIOCAOP的不多做赘述了,说下IOC:SpringIOC解决的是对象管理和对象依赖的问题,IOC容器可以理解为一个对象工厂,我们都把该对象交给工厂,工厂管理这些对象的创建以及依赖关系...

java的redis连接工具篇(java redis client)

在Java里,有不少用于连接Redis的工具,下面为你介绍一些主流的工具及其特点:JedisJedis是Redis官方推荐的Java连接工具,它提供了全面的Redis命令支持,且...