百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

预测性维护:使用卷积神经网络(CNN)检测传感器故障

bigegpt 2024-09-02 16:25 3 浏览

在机器学习中,随着时间的推移,预测维修的话题变得越来越流行。

在本文中,我们将看一个分类问题。我们将使用Keras创建一个卷积神经网络(CNN)模型,并尝试对结果进行直观的解释。

数据集

我决定从evergreen UCI repository(液压系统的状态监测)中获取机器学习数据集(https://archive.ics.uci.edu/ml/datasets/Condition+monitoring+of+hydraulic+systems#)。

该试验台由一次工作回路和二级冷却过滤回路组成,通过油箱连接。系统循环重复恒定负载循环(持续时间60秒)并测量过程值,例如压力,体积流量和温度,同时定量地改变四个液压元件(冷却器、阀门、泵和蓄能器)的状态。

我们可以想象有一个液压管道系统,该系统周期性地接收到由于管道内某种液体的转变而产生的脉冲。此现象持续60秒,采用不同Hz频率的传感器(传感器物理量单位采样率,PS1 Pressure bar, PS2 Pressure bar, PS3 Pressure bar, PS4 Pressure bar, PS5 Pressure bar, PS6 Pressure bar, EPS1电机功率, FS1体积流量, FS2体积流量, TS1温度, TS2温度, TS3温度, TS4温度, VS1振动, VS1振动、CE冷却效率、CP冷却功率、SE效率系数)进行测量。

我们的目的是预测组成管道的四个液压元件的状况。这些目标条件值以整数值的形式注释(易于编码),并告诉我们每个周期特定组件是否接近失败。

读取数据

每个传感器测量的值在特定的txt文件中可用,其中每一行以时间序列的形式占用一个周期。

我决定考虑来自温度传感器(TS1、TS2、TS3、TS4)的数据,该传感器的测量频率为1 Hz(每一个cicle进行60次观察)。

label = pd.read_csv('profile.txt', sep='\t', header=None)
data = ['TS1.txt','TS2.txt','TS3.txt','TS4.txt']
df = pd.DataFrame()
#read and concat data
for txt in data:
 read_df = pd.read_csv(txt, sep='\t', header=None)
 df = df.append(read_df)
#scale data
def scale(df):
 return (df - df.mean(axis=0))/df.std(axis=0)
df = df.apply(scale)

对于第一个周期,我们从温度传感器得到这些时间序列:

机器学习模型

为了捕捉有趣的特征和不明显的相关性,我们决定采用一维卷积神经网络(CNN)。这种机器学习模型非常适合对传感器的时间序列进行分析,并强制在短的固定长度段中重塑数据。

我选择了Keras网站上描述的卷积神经网络(CNN),并更新了参数。该机器学习模型的建立是为了对制冷元件的状态进行分类,仅对给出温度时间序列的数组形式(t_period x n_sensor for each single cycle)作为输入。

n_sensors, t_periods = 4, 60
model = Sequential()
model.add(Conv1D(100, 6, activation='relu', input_shape=(t_periods, n_sensors)))
model.add(Conv1D(100, 6, activation='relu'))
model.add(MaxPooling1D(3))
model.add(Conv1D(160, 6, activation='relu'))
model.add(Conv1D(160, 6, activation='relu'))
model.add(GlobalAveragePooling1D())
model.add(Dropout(0.5))
model.add(Dense(3, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
BATCH_SIZE, EPOCHS = 16, 10
history = model.fit(X_train, y_train, batch_size=BATCH_SIZE,
 epochs=EPOCHS, validation_split=0.2, verbose=1)

在这种情况下只有10个epochs,我们能够取得惊人的成果!

对测试数据进行预测,机器学习模型达到0.9909的准确度

因为通过这种方式,我们能够检测并防止系统中可能出现的故障。

可视化结果

如果我们想要对系统状态有一个总体的了解,那么查看图形表示可能会很有用。为了达到这一目标,我们重新利用我们在上面构建的卷积神经网络(CNN)来制作一个解码器,并从每个周期的时间序列中提取特征。使用keras,这可以在一行Python代码中实现:

emb_model = Model(inputs=model.input, outputs=model.get_layer('global_average_pooling1d_1').output)

新模型是一个解码器,它接收与分类任务中使用的NN格式相同的输入数据(t_period x n_sensor for each single cycle),并以嵌入形式返回“预测”,嵌入形式来自具有相对维数的GlobalAveragePooling1D层(每一个循环有160个嵌入变量)。

使用我们的编码器在测试数据上计算预测,采用技术来减小尺寸(如PCA或T-SNE)并绘制结果,我们可以看到:

tsne = TSNE(n_components=2, random_state=42, n_iter=300, perplexity=5)
T = tsne.fit_transform(test_cycle_emb)
fig, ax = plt.subplots(figsize=(16,9))
colors = {0:'red', 1:'blue', 2:'yellow'}
ax.scatter(T.T[0], T.T[1], c=[colors[i] for i in y_test]) 
plt.show()

每个点都表示测试集中的一个循环,相对颜色是Cooler条件的目标类。可以看出如何很好地定义冷却器组件的目标值之间的区别。这种方法是我们模型性能的关键指标。

最后

在这篇文章中,我们尝试以CNN的时间序列分类任务的形式解决预测性维护的问题我们试图给出结果的直观表示

相关推荐

有些人能留在你的心里,但不能留在你生活里。

有时候,你必须要明白,有些人能留在你的心里,但不能留在你生活里。Sometimes,youhavetorealize,Somepeoplecanstayinyourheart,...

Python学不会来打我(34)python函数爬取百度图片_附源码

随着人工智能和大数据的发展,图像数据的获取变得越来越重要。作为Python初学者,掌握如何从网页中抓取图片并保存到本地是一项非常实用的技能。本文将手把手教你使用Python函数编写一个简单的百度图片...

软网推荐:图像变变变 一“软”见分晓

当我们仅需要改变一些图片的分辨率、裁减尺寸、添加水印、标注文本、更改图片颜色,或将一种图片转换为另一种格式时,总比较讨厌使用一些大型的图像处理软件,尤其是当尚未安装此类软件时,更是如此。实际上,只需一...

首款WP8.1图片搜索应用,搜照片得资料

首款WP8.1图片搜索应用,搜照片得资料出处:IT之家原创(天际)2014-11-1114:32:15评论WP之家报道,《反向图片搜索》(ReverseImageSearch)是Window...

分享一组美图(图片来自头条)(头条美女头像)

...

盗墓笔记电视剧精美海报 盗墓笔记电视剧全集高清种子下载

出身“老九门”世家的吴邪,因身为考古学家的父母在某次保护国家文物行动时被国外盗墓团伙杀害,吴家为保护吴邪安全将他送去德国读书,因而吴邪对“考古”事业有着与生俱来的兴趣。在一次护宝过程中他偶然获得一张...

微软调整Win11 24H2装机策略:6月起36款预装应用改为完整版

IT之家7月16日消息,微软公司今天(7月16日)发布公告,表示自今年6月更新开始,已默认更新Windows1124H2和WindowsServer2025系统中预装...

谷歌手把手教你成为谣言终结者 | 域外

刺猬公社出品,必属原创,严禁转载。合作事宜,请联系微信号:yunlugongby贾宸琰编译、整理11月23日,由谷歌新闻实验室(GoogleNewsLab)联合Bellingcat、DigD...

NAS 部署网盘资源搜索神器:全网资源一键搜,免费看剧听歌超爽!

还在为找不到想看的电影、电视剧、音乐而烦恼?还在各个网盘之间来回切换,浪费大量时间?今天就教你如何在NAS上部署aipan-netdisk-search,一款强大的网盘资源搜索神器,让你全网资源...

使用 Docker Compose 简化 INFINI Console 与 Easysearch 环境搭建

前言回顾在上一篇文章《搭建持久化的INFINIConsole与Easysearch容器环境》中,我们详细介绍了如何使用基础的dockerrun命令,手动启动和配置INFINICon...

为庆祝杜特尔特到访,这个国家宣布全国放假?

(观察者网讯)近日,一篇流传甚广的脸书推文称,为庆祝杜特尔特去年访问印度,印度宣布全国放假,并举办了街头集会以示欢迎。菲媒对此做出澄清,这则消息其实是“假新闻”。据《菲律宾世界日报》2日报道,该贴子...

一课译词:毛骨悚然(毛骨悚然的意思是?)

PhotobyMoosePhotosfromPexels“毛骨悚然”,汉语成语,意思是毛发竖起,脊梁骨发冷;形容恐惧惊骇的样子(withone'shairstandingonend...

Bing Overtakes Google in China's PC Search Market, Fueled by AI and Microsoft Ecosystem

ScreenshotofBingChinahomepageTMTPOST--Inastunningturnintheglobalsearchenginerace,Mic...

找图不求人!6个以图搜图的识图网站推荐

【本文由小黑盒作者@crystalz于03月08日发布,转载请标明出处!】前言以图搜图,专业说法叫“反向图片搜索引擎”,是专门用来搜索相似图片、原始图片或图片来源的方法。常用来寻找现有图片的原始发布出...

浏览器功能和“油管”有什么关联?为什么要下载

现在有没有一款插件可以实现全部的功能,同时占用又小呢,主题主要是网站的一个外观,而且插件则主要是实现wordpress网站的一些功能,它不仅仅可以定制网站的外观,还可以实现很多插件的功能,搭载chro...