百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

STM32+DHT11采集温湿度传感器数据

bigegpt 2024-09-08 11:32 9 浏览

文章来源:STM32+DHT11采集温湿度传感器数据_电子爱好者66的博客-CSDN博客

1. DHT11介绍

DHT11 是一款湿温度一体化的数字传感器。该传感器包括一个电阻式测湿元件和一个 NTC测温元件,并与一个高性能 8 位单片机相连接。通过单片机等微处理器简单的电路连接就能够实时的采集本地湿度和温度。DHT11 与单片机之间能采用简单的单总线进行通信,仅仅需要一个 I/O 口。传感器内部湿度和温度数据 40Bit 的数据一次性传给单片机,数据采用校验和方式进行校验,有效的保证数据传输的准确性。DHT11 功耗很低,5V 电源电压下,工作平均最大电流 0.5mA。

DHT11 的技术参数如下:

? 工作电压范围:3.3V-5.5V

? 工作电流 :平均 0.5mA

? 输出:单总线数字信号

? 测量范围:湿度 20~90%RH,温度 0~50℃

? 精度 :湿度±5%,温度±2℃

? 分辨率 :湿度 1%,温度 1℃

DHT11 的管脚排列如下图 :

DHT11 数字湿温度传感器采用单总线数据格式。即,单个数据引脚端口完成输入输出双向传输。其数据包由 5Byte(40Bit)组成。数据分小数部分和整数部分,一次完整的数据传输为40bit,高位先出。DHT11 的数据格式为:8bit 湿度整数数据+8bit 湿度小数数据+8bit 温度整数数据+8bit 温度小数数据+8bit 校验和。其中校验和数据为前四个字节相加。 传感器数据输出的是未编码的二进制数据。数据(湿度、温度、整数、小数)之间应该分开 处理。


由以上数据就可得到湿度和温度的值,计算方法:

湿度= byte4 . byte3=45.0 (%RH)

温度= byte2 . byte1=28.0 ( ℃)

校验= byte4+ byte3+ byte2+ byte1=73(=湿度+温度)(校验正确)。

可以看出,DHT11的数据格式是十分简单的,DHT11和 MCU的一次通信最大为 3ms 左右,

建议主机连续读取时间间隔不要小于 100ms

2.DHT11 的传输时序

DHT11 的数据发送流程如图:


首先主机发送开始信号,即:拉低数据线,保持 t1(至少 18ms)时间,然后拉高数据线 t2(20~40us)时间,然后读取 DHT11 的响应,正常的话,DHT11 会拉低数据线,保持 t3(40~50us)时间,作为响应信号,然后 DHT11 拉高数据线,保持 t4(40~50us)时间后,开始输出数据。

DHT11 输出数字‘0’的时序如图:

DHT11 输出数字‘1’的时序如图:

3. STM32程序编写

硬件连接:

使用的单片机型号是:STM32F103C8T6

引脚连接:

+ 接 5V

- 接 GND

S 接 PB12

程序编写:

ht11.c:

实现了DHT11传感器读取温湿度数据的功能,具体实现流程如下:

  1. 定义DHT11的引脚号和初始化GPIO的函数,包括输出模式和输入模式的初始化。
  2. 定义发送开始信号的函数,即先将DQ拉低20ms以上,再拉高20~40us,以唤醒DHT11。
  3. 定义检测DHT11回应的函数,即等待DHT11将DQ拉低40~80us,再拉高40~80us,如果在100次内没有检测到DHT11回应,则返回1表示未检测到。
  4. 定义从DHT11读取一个位的函数,即等待DQ变为低电平,再等待变高电平,最后延时40us,返回读取到的值。
  5. 定义从DHT11读取一个字节的函数,即调用8次读取一个位的函数,将8个位组成一个字节,返回读取到的字节。
  6. 定义从DHT11读取一次数据的函数,即调用发送开始信号的函数后,如果检测到DHT11回应,则调用读取一个字节的函数读取40位数据,并计算校验和,如果校验和正确,则将湿度值和温度值分别存到humi和temp指针所指的变量中,返回0表示读取成功,否则返回1表示读取失败。

需要注意的是,DHT11的一次通讯时间最大为3ms,主机连续采样间隔建议不小于100ms,因此在使用此段代码时,需要在主程序中控制采样时间间隔,避免频繁读取导致DHT11无法正常工作。

 ?#include "dht11.h"
#include "delay.h"	
#include "stm32f10x.h"        
//	 		
//DHT11一次通讯时间最大3ms,主机连续采样间隔建议不小于100ms。
//
 
 
//输出模式
void DHT11_GPIO_Init_OUT(void)
{
	GPIO_InitTypeDef GPIO_InitStructure;
	
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
	
	GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_Out_PP; //推挽输出
	GPIO_InitStructure.GPIO_Pin   = GPIO_Pin_12;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	
	GPIO_Init(GPIOB, &GPIO_InitStructure);
 
}
 
//输入模式
void DHT11_GPIO_Init_IN(void)
{
	GPIO_InitTypeDef GPIO_InitStructure;
	
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
	
	GPIO_InitStructure.GPIO_Mode  = GPIO_Mode_IN_FLOATING; //浮空输入
	GPIO_InitStructure.GPIO_Pin   = GPIO_Pin_12;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	
	GPIO_Init(GPIOB, &GPIO_InitStructure);
 
}
 
//主机发送开始信号
void DHT11_Rst(void)
{
	  DHT11_GPIO_Init_OUT();
    DHT11_DQ_OUT=0; 	//拉低DQ
    delay_ms(20);    	//拉低至少18ms
    DHT11_DQ_OUT=1; 	//DQ=1 
	  delay_us(30);     	//主机拉高20~40us
}
 
//等待DHT11的回应
//返回1:未检测到DHT11的存在
//返回0:存在
u8 DHT11_Check(void) 	   
{   
	u8 retry=0;
	//DHT11_IO_IN(); //SET INPUT	
	DHT11_GPIO_Init_IN();
    while (DHT11_DQ_IN&&retry<100)//DHT11会拉低40~80us
	{
		retry++;
		delay_us(1);
	};	 
	if(retry>=100)return 1;
	else retry=0;
    while (!DHT11_DQ_IN&&retry<100)//DHT11拉低后会再次拉高40~80us
	{
		retry++;
		delay_us(1);
	};
	if(retry>=100)return 1;	    
	return 0;
}
 
//从DHT11读取一个位
//返回值:1/0
u8 DHT11_Read_Bit(void) 			 
{
 	u8 retry=0;
	while(DHT11_DQ_IN&&retry<100)//等待变为低电平
	{
		retry++;
		delay_us(1);
	}
	retry=0;
	while(!DHT11_DQ_IN&&retry<100)//等待变高电平
	{
		retry++;
		delay_us(1);
	}
	delay_us(40);//等待40us
	if(DHT11_DQ_IN)return 1;
	else return 0;		   
}
 
//从DHT11读取一个字节
//返回值:读到的数据
u8 DHT11_Read_Byte(void)    
{        
    u8 i,dat;
    dat=0;
	for (i=0;i<8;i++) 
	{
   		dat<<=1; 
	    dat|=DHT11_Read_Bit();
    }						    
    return dat;
}
 
//从DHT11读取一次数据
//temp:温度值(范围:0~50°)
//humi:湿度值(范围:20%~90%)
//返回值:0,正常;1,读取失败
u8 DHT11_Read_Data(u8 *temp,u8 *humi)    
{        
 	u8 buf[5];
	u8 i;
	DHT11_Rst();
	if(DHT11_Check()==0)
	{
		for(i=0;i<5;i++)//读取40位数据
		{
			buf[i]=DHT11_Read_Byte();
		}
		if((buf[0]+buf[1]+buf[2]+buf[3])==buf[4])
		{
			*humi=buf[0];
			*temp=buf[2];
		}
	}else return 1;
	return 0;	    
}

ht11.h

#ifndef __DHT11_H
#define __DHT11_H
#include "sys.h"   
 
IO操作函数											   
#define	DHT11_DQ_OUT PBout(12) //数据端口	PB12
#define	DHT11_DQ_IN  PBin(12)  //数据端口	PB12 
 
void DHT11_GPIO_Init_OUT(void);
void DHT11_GPIO_Init_IN(void);
 
u8 DHT11_Init(void);	//初始化DHT11
u8 DHT11_Read_Data(u8 *temp,u8 *humi);//读取温湿度
u8 DHT11_Read_Byte(void);//读出一个字节
u8 DHT11_Read_Bit(void);//读出一个位
u8 DHT11_Check(void);	//检测是否存在DHT11
void DHT11_Rst(void);	//复位DHT11 
 
#endif

主函数:

实现1s采集一次温湿度数据,并将数据通过串口打印出来。

#include "delay.h"
#include "sys.h"
#include "usart.h"
#include "dht11.h"   
 
extern unsigned int rec_data[4];
 
 int main(void)
 { 
	u8 temperature;  	    
	u8 humidity; 	 
	delay_init();	    	 //延时函数初始化	  
	uart_init(9600);	 	//串口初始化为9600
	 
  printf("温湿度开始采集......\r\n");
 
	while(1)
	{	    	    
		
		DHT11_Read_Data(&temperature,&humidity);		//读取温湿度值
		delay_ms(100);
		
		printf("温度:%d\r\n",temperature); 
		printf("湿度:%d\r\n",humidity);
 
	}
}

运行效果:

源码:https://download.csdn.net/download/qq_39742246/88361721

相关推荐

Redis集群对比:主从复制、哨兵模式、Cluster一文看懂所有优缺点

在分布式系统中,Redis作为高性能的内存数据库,其集群方案的选择直接影响到系统的稳定性、可用性和扩展性。本文将全面对比Redis的三种主流集群方案:主从复制、哨兵模式和Cluster模式,帮助开发者...

redis的主从复制,读写分离,主从切换

当数据量变得庞大的时候,读写分离还是很有必要的。同时避免一个redis服务宕机,导致应用宕机的情况,我们启用sentinel(哨兵)服务,实现主从切换的功能。redis提供了一个master,多个sl...

# Redis 入门到精通(九)-- 主从复制(3)

#Redis入门到精通(九)--主从复制(3)##一、redis主从复制-常见问题(1)###1、伴随着redis系统的运行,master的数据量会越来越大,一旦master重启...

redis - 主从复制(Redis主从复制时序图)

1引言在上一篇文章中,我们了解了Redis两种不同的持久化方式,Redis服务器通过持久化,把Redis内存中持久化到硬盘当中,当Redis宕机时,我们重启Redis服务器时,可以由RDB文件或AO...

# Redis 入门到精通(九)-- 主从复制(2)

#Redis入门到精通(九)--主从复制(2)##一、redis主从复制--数据同步阶段注意事项###1、数据同步阶段master说明1)如果master数据量巨大,数据同步阶段应...

Redis主从复制(redis主从复制主节点挂了)

介绍Redis有两种不同的持久化方式,Redis服务器通过持久化,把Redis内存中持久化到硬盘当中,当Redis宕机时,我们重启Redis服务器时,可以由RDB文件或AOF文件恢复内存中的数据。不过...

深入解析 Redis 集群的主从复制实现方式

在互联网大厂的后端开发领域,Redis作为一款高性能的内存数据库,被广泛应用于缓存、消息队列等场景。而Redis集群中的主从复制机制,更是保障数据安全、实现读写分离以及提升系统性能的关键所在。今...

Redis主从架构详解(redis主从架构高可用如何实现)

Redis主从架构搭建Redis主节点配置创建主节点目录(/opt/redis-master),复制redis.conf到该目录下,redis.conf配置项修改#后台启动daemonizeyes...

抖音“四大包塘战神”:承包了全网的快乐

在抖音钓鱼垂类领域,"包塘战神"军团正掀起一场黑色幽默风暴。空军华、大表坑、李赔光、透心良四位创作者,以承包鱼塘为舞台,用连续翻车的钓鱼直播构筑起流量奇观。当钓鱼佬在抖音集体转型喜剧人...

ORACLE 11G RAC 安装-通过VM配置共享磁盘

简介:在自己的电脑上通过VM软件搭建Oracle11GRAC,通过修改VM的参数文件来实现磁盘共享!目标:搭建RAC环境实现:使用VMwareWorkstation8.0.0+ORACLE...

Linux操作系统安全配置(linux系统安全配置包括)

一、服务相关命令systemctlenable服务名#开机自启动systemctldisable服务名#禁用开机自启动systemctlstop服务名#停止服务systemctls...

关于Linux性能调优中网络I/O的一些笔记

写在前面和小伙伴分享一些Linux网络优化的笔记,内容很浅,可以用作入门博文内容结合《Linux性能优化》读书笔记整理涉及内容包括常用的优化工具(mii-tool,ethtool,ifconfig,i...

从 Sonatype Nexus Repository Manager 迁移到 Artifactory

1.Nexus1.1下载下载链接:https://help.sonatype.com/repomanager3/product-information/download/download-archiv...

Ubuntu20安装zabbix5.0企业监控系统亲测教程

前言示例主机:zabbix10.0.100.10,将安装在UbuntuServer上教程说明:因使用官方教程无法安装成功,所以本教程与官方教程有所不同安装前提:已安装UbuntuServer2...

Linux内核设计与实现—进程管理(linux内核程序设计)

进程进程就是处于执行期的程序(目标码存放在某种存储介质上)。进并不仅仅局限于一段可执行程序代码(Unix称其为代码段,textsection)。通常进程还要包含其他资源,像打开的文件,挂起的信号,...