MATLAB二分法求方程的根(实例加程序)
bigegpt 2024-09-24 07:13 3 浏览
零点的存在性定理
早在高中阶段,我们就学习过函数的零点存在性定理。简单地说,对于区间[a,b]上的连续函数f(x),如果满足f(a)f(b)<=0,那么函数在[a,b]上至少存在一个零点。
根据函数与方程的关系我们可以得到,对于相应的方程f(x)=0。如果方程的左侧在a,b处不同号,那么,方程在[a,b]上存在零点。
二分法的思想
在得到根的存在性之后,我们就希望找到或者逼近方程的根。这种情况下比较显然的一种方式就是二分法。二分法的基本步骤如下:
实例1
程序
clc;
clear all;
close all;
Re = 1e4;%赋值Re的值
C = 0.57;%%赋值C的值
%第二问程序
f= @(beta) 0.5959+0.0312.*beta.^(2.1)-0.184*beta.^8+(91.71.*beta.^(2.5)./(Re^0.75))-C;%设置目标函数
a =0.9;%赋值a
b = 1;%赋值b
eps = 1e-6;%赋值eps
T = bisect(f,a,b,eps);%调用函数
data = [T(:,6) T(:,end)+C T(:,end)]; %输出求解的beta C error
save('data93552.txt','data','-ascii');
function T = bisect(f,a,b,eps)
%%
%输入
%f代表输入的函数 a,b代表区间范围[a,b],eps是输入的误差
%T代表输出的参数
%包括迭代次数 左区间a a点函数值 右区间b b点函数值 区间a和b的中点值xk xk点函数值
%%
k=1%设置初始值
x=(a+b)/2;%设置初始区间中点
fprintf(' k a f(a) b f(b) xk f(xk)\n ');%输出变量的名字
T=[k,a,f(a),b,f(b),x,f(x)];%对T赋值
while abs(T(k,4)-T(k,6))>eps/2 %判断和误差的大小
k=k+1;%循环计数
if f(x)*f(a)==0 %判断当函数值为0的时候
a=a;%左区间重新赋值
b=x;%右区间重新赋值
x=(a+b)/2;%区间中点重新赋值
T=[T;k,a,f(a),b,f(b),x,f(x)];%对T赋值
break
elseif f(x)*f(a)>0 %判断当f(x)和f(a)同号的情况
a=x;%左区间重新赋值
b=b;%右区间重新赋值
x=(a+b)/2;%区间中点重新赋值
T=[T;k,a,f(a),b,f(b),x,f(x)];%对T赋值
elseif f(x)*f(a)<0 %判断当f(x)和f(a)异号的情况
a=a;%左区间重新赋值
b=x;%右区间重新赋值
x=(a+b)/2;%区间中点重新赋值
T=[T;k,a,f(a),b,f(b),x,f(x)];%对T赋值
end
end
disp(T);%输出变量T
fprintf('经过%d次迭代,函数方程根的近似解为:x=%.8f\n',k-1,T(k-1,6))%输出迭代过程
error = T(:,7);%误差
figure;%新建一个窗口
plot(1:k,error,'r');%画图
xlabel('k');%设置横轴坐标
ylabel('error value');%设置纵轴坐标
end
运行结果
结果:
k =
1
k a f(a) b f(b) xk f(xk)
1.0000 0.9000 0.0422 1.0000 -0.0352 0.9500 0.0125
2.0000 0.9500 0.0125 1.0000 -0.0352 0.9750 -0.0087
3.0000 0.9500 0.0125 0.9750 -0.0087 0.9625 0.0025
4.0000 0.9625 0.0025 0.9750 -0.0087 0.9688 -0.0029
5.0000 0.9625 0.0025 0.9688 -0.0029 0.9656 -0.0002
6.0000 0.9625 0.0025 0.9656 -0.0002 0.9641 0.0012
7.0000 0.9641 0.0012 0.9656 -0.0002 0.9648 0.0005
8.0000 0.9648 0.0005 0.9656 -0.0002 0.9652 0.0002
9.0000 0.9652 0.0002 0.9656 -0.0002 0.9654 0.0000
10.0000 0.9654 0.0000 0.9656 -0.0002 0.9655 -0.0001
11.0000 0.9654 0.0000 0.9655 -0.0001 0.9655 -0.0000
12.0000 0.9654 0.0000 0.9655 -0.0000 0.9655 -0.0000
13.0000 0.9654 0.0000 0.9655 -0.0000 0.9654 -0.0000
14.0000 0.9654 0.0000 0.9654 -0.0000 0.9654 -0.0000
15.0000 0.9654 0.0000 0.9654 -0.0000 0.9654 0.0000
16.0000 0.9654 0.0000 0.9654 -0.0000 0.9654 0.0000
17.0000 0.9654 0.0000 0.9654 -0.0000 0.9654 -0.0000
18.0000 0.9654 0.0000 0.9654 -0.0000 0.9654 -0.0000
经过17次迭代,函数方程根的近似解为:x=0.96543503
实例2
程序
clc;
clear all;
close all;
syms U L; %将区间上下限定为变量
f=@(x) exp(x)-x^2+3*x-2; %求给定的函数
U=1;
L=0;
while U-L>1e-10 %设定精度
root=(U+L)/2; %当根的区间大于所给精度时,利用二分法重新规划求根区间
if f(root)==0
break; %r恰好为所求根,直接跳出循环
end
if f(root)*f(U)<0 %用零点存在定理判断根所在的区域
L=root;
else
U=root;
end
end
root
%结果 root =0.2575
运行结果
%结果 root =0.2575
实例3
程序
clc;
clear all;
close all;
% -------------- inputs -------------------
f = @(x) 3*x^2-x-3;
a = 0;
b = 2;
% tolerance / max iter
TOL = 1e-4; NI = 50;
% -------------------------------------------------------
% STEP 1: initialization
i = 1;
fa = f(a);
converge = false; % convergence flag
% STEP 2: iteration
while i<=NI
% STEP 3: compute p at the i's step
p = a+(b-a)/2;
fp = f(p);
% STEP 4: check if meets the stopping criteria
if (abs(fp)<eps || (b-a)/2 < TOL) % eps is Matlab-machine zero
converge = true; % bisection method converged!
break; % exit out of while loop
else
% STEP 5
i = i+1;
% STEP 6
if fa*fp > 0
a = p; fa = fp;
else
b = p;
end
end
end
b
f(b)
运行结果
b =
1.1805
ans =
4.9619e-04
实例4
clc;
clear all;
close all;
a = 1;
b = 1.5;
tol = 1e-8;
x = half(a, b, tol)
function x = half(a, b, tol)% tol 是 tolerance 的缩写,表示绝对误差
c = (a + b) / 2; k = 1;
m = 1 + round((log(b - a) - log(2 * tol)) / log(2)); % <1>
while k <= m
if f(c) == 0
c = c;
return;
elseif f(a) * f(c) < 0
b = (a + b) / 2;
else
a = (a + b) / 2;
end
c = (a + b) / 2; k = k + 1;
end
x = c; % 这里加分号是为了不再命令行中输出
k % 不加分号就会在控制台输出
c
end
function y = f(x)
y = x^3 - x -1;
end
运行结果
k =
27
c =
1.3247
x =
1.3247
>>
本文内容来源于网络,仅供参考学习,如内容、图片有任何版权问题,请联系处理,24小时内删除。
作 者 | 郭志龙
编 辑 | 郭志龙
校 对 | 郭志龙
相关推荐
- C#.NET Autofac 详解(c# autoit)
-
简介Autofac是一个成熟的、功能丰富的.NET依赖注入(DI)容器。相比于内置容器,它额外提供:模块化注册、装饰器(Decorator)、拦截器(Interceptor)、强o的属性/方法注...
- webapi 全流程(webapi怎么部署)
-
C#中的WebAPIMinimalApi没有控制器,普通api有控制器,MinimalApi是直达型,精简了很多中间代码,广泛适用于微服务架构MinimalApi一切都在组控制台应用程序类【Progr...
- .NET外挂系列:3. 了解 harmony 中灵活的纯手工注入方式
-
一:背景1.讲故事上一篇我们讲到了注解特性,harmony在内部提供了20个HarmonyPatch重载方法尽可能的让大家满足业务开发,那时候我也说了,特性虽然简单粗暴,但只能解决95%...
- C# 使用SemanticKernel调用本地大模型deepseek
-
一、先使用ollama部署好deepseek大模型。具体部署请看前面的头条使用ollama进行本地化部署deepseek大模型二、创建一个空的控制台dotnetnewconsole//添加依赖...
- C#.NET 中间件详解(.net core中间件use和run)
-
简介中间件(Middleware)是ASP.NETCore的核心组件,用于处理HTTP请求和响应的管道机制。它是基于管道模型的轻量级、模块化设计,允许开发者在请求处理过程中插入自定义逻辑。...
- IoC 自动注入:让依赖注册不再重复劳动
-
在ASP.NETCore中,IoC(控制反转)功能通过依赖注入(DI)实现。ASP.NETCore有一个内置的依赖注入容器,可以自动完成依赖注入。我们可以结合反射、特性或程序集扫描来实现自动...
- C#.NET 依赖注入详解(c#依赖注入的三种方式)
-
简介在C#.NET中,依赖注入(DependencyInjection,简称DI)是一种设计模式,用于实现控制反转(InversionofControl,IoC),以降低代码耦合、提高可...
- C#从零开始实现一个特性的自动注入功能
-
在现代软件开发中,依赖注入(DependencyInjection,DI)是实现松耦合、模块化和可测试代码的一个重要实践。C#提供了优秀的DI容器,如ASP.NETCore中自带的Micr...
- C#.NET 仓储模式详解(c#仓库货物管理系统)
-
简介仓储模式(RepositoryPattern)是一种数据访问抽象模式,它在领域模型和数据访问层之间创建了一个隔离层,使得领域模型无需直接与数据访问逻辑交互。仓储模式的核心思想是将数据访问逻辑封装...
- C#.NET 泛型详解(c# 泛型 滥用)
-
简介泛型(Generics)是指在类型或方法定义时使用类型参数,以实现类型安全、可重用和高性能的数据结构与算法为什么需要泛型类型安全防止“装箱/拆箱”带来的性能损耗,并在编译时检测类型错误。可重用同一...
- 数据分析-相关性分析(相关性 分析)
-
相关性分析是一种统计方法,用于衡量两个或多个变量之间的关系强度和方向。它通过计算相关系数来量化变量间的线性关系,从而帮助理解变量之间的相互影响。相关性分析常用于数据探索和假设检验,是数据分析和统计建模...
- geom_smooth()函数-R语言ggplot2快速入门18
-
在每节,先运行以下这几行程序。library(ggplot2)library(ggpubr)library(ggtext)#用于个性化图表library(dplyr)#用于数据处理p...
- 规范申报易错要素解析(规范申报易错要素解析)
-
为什么要规范申报?规范申报是以满足海关监管、征税、统计等工作为目的,纳税义务人及其代理人依法向海关如实申报的行为,也是海关审接单环节依法监管的重要工作。企业申报的内容须符合《中华人民共和国海关进出口货...
- 「Eurora」海关编码归类 全球海关编码查询 关务服务
-
海关编码是什么? 海关编码即HS编码,为编码协调制度的简称。 其全称为《商品名称及编码协调制度的国际公约》(InternationalConventionforHarmonizedCo...
- 9月1日起,河南省税务部门对豆制品加工业试行新政7类豆制品均适用投入产出法
-
全媒体记者杨晓川报道9月2日,记者从税务部门获悉,为减轻纳税人税收负担,完善农产品增值税进项税额抵扣机制,根据相关规定,结合我省实际情况,经广泛调查研究和征求意见,从9月1日起,我省税务部门对豆制品...
- 一周热门
- 最近发表
- 标签列表
-
- mybatiscollection (79)
- mqtt服务器 (88)
- keyerror (78)
- c#map (65)
- xftp6 (83)
- bt搜索 (75)
- c#var (76)
- xcode-select (66)
- mysql授权 (74)
- 下载测试 (70)
- linuxlink (65)
- pythonwget (67)
- androidinclude (65)
- libcrypto.so (74)
- linux安装minio (74)
- ubuntuunzip (67)
- vscode使用技巧 (83)
- secure-file-priv (67)
- vue阻止冒泡 (67)
- jquery跨域 (68)
- php写入文件 (73)
- kafkatools (66)
- mysql导出数据库 (66)
- jquery鼠标移入移出 (71)
- 取小数点后两位的函数 (73)