百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

可视化:R语言七仙女,个个都美! r语言可视化代码

bigegpt 2024-09-27 00:35 3 浏览

随着数据量的不断增加,数据可视化成为将数字变成可用的信息的一个重要方式。R语言提供了一系列的已有函数和可调用的库,通过建立可视化的方式进行数据的呈现。

在使用图表分析的时候,常用的有7种图表:

1. 散点图

2. 直方图

3. 柱状图和条形图

4. 箱线图

5. 面积图

6. 热点图

7. 相关图

1、 散点图

散点图通常用于分析两个连续变量之间的关系。



这里使用R中的ggplot()和geom_point()函数。

library(ggplot2) // ggplot2 是R中的一个函数库

ggplot(train, aes(Item_Visibility, Item_MRP)) + geom_point() + scale_x_continuous(“Item

Visibility”, breaks = seq(0,0.35,0.05))+ scale_y_continuous(“Item MRP”, breaks = seq(0,270,by =

30))+ theme_bw()

下图中增加了一个新的变量,对产品进行分类的变量,命名为Item_Type,图中以不同的颜色作为显示。



R代码中增加了分组:

ggplot(train, aes(Item_Visibility, Item_MRP)) + geom_point(aes(color = Item_Type)) +

scale_x_continuous(“Item Visibility”, breaks = seq(0,0.35,0.05))+

scale_y_continuous(“Item MRP”, breaks = seq(0,270,by = 30))+

theme_bw() + labs(title=”Scatterplot”)

可以进一步可视化,将散点图以不同的小图表的形式呈现,下图中,每一个小图表都代表一种不同的产品:



代码如下:

ggplot(train, aes(Item_Visibility, Item_MRP)) + geom_point(aes(color = Item_Type)) +

scale_x_continuous(“Item Visibility”, breaks = seq(0,0.35,0.05))+

scale_y_continuous(“Item MRP”, breaks = seq(0,270,by = 30))+

theme_bw() + labs(title=”Scatterplot”) + facet_wrap( ~ Item_Type)

代码中,facet_warp将图像显示在长方形图表中。

2、 直方图

直方图用于连续变量的可视化分析。将数据划分,并用概率的形式呈现数据的规律。我们可以将分类根据需求进行组合和拆分,从而通过这种方式看到数据的变化。



下面是一个简单的画直方图的例子,使用的是R中的ggplot()和geom_histogram()函数。

ggplot(train, aes(Item_MRP)) + geom_histogram(binwidth = 2)+

scale_x_continuous(“Item MRP”, breaks = seq(0,270,by = 30))+

scale_y_continuous(“Count”, breaks = seq(0,200,by = 20))+

labs(title = “Histogram”)

3、 柱状图和条形图

柱状图一般用于表现分类的变量或者是连续的分类变量的组合。



下面是一个简单的画柱状图的例子,使用的是R中的ggplot()函数。

ggplot(train, aes(Outlet_Establishment_Year)) + geom_bar(fill = “red”)+theme_bw()+

scale_x_continuous(“Establishment Year”, breaks = seq(1985,2010)) +

scale_y_continuous(“Count”, breaks = seq(0,1500,150)) +

coord_flip()+ labs(title = “Bar Chart”) + theme_gray()

水平柱状图

去除代码中的coord_flIP()变量,可以将直方图以水平直方图的方法呈现。



为了得到商品重量(连续变量)和折扣店(分类变量)的关系,可使用下面的代码:

ggplot(train, aes(Item_Type, Item_Weight)) + geom_bar(stat = “identity”, fill = “darkblue”) +

scale_x_discrete(“Outlet Type”)+ scale_y_continuous(“Item Weight”, breaks = seq(0,15000, by =

500))+ theme(axis.text.x = element_text(angle = 90, vjust = 0.5)) + labs(title = “Bar Chart”)

堆叠条形图

堆叠条形图是柱状图的一个高级版本,可以将分类变量组合进行分析。



下面是一个简单的画堆叠条形图的例子,使用的是R中的ggplot()函数。

ggplot(train, aes(Outlet_Location_Type, fill = Outlet_Type)) + geom_bar()+

labs(title = “Stacked Bar Chart”, x = “Outlet Location Type”, y = “Count of Outlets”)

4、 箱线图

箱线图一般用于相对复杂的场景,通常是组合分类的连续变量。这种图表应用于对数据延伸的可视化分析和检测离值群。主要包含数据的5个重要节点,最小值,25%,50%,75%和最大值。



图中,黑色的点为离值群。离值群的检测和剔除是数据挖掘中很重要的环节。

下面是一个简单的画箱线图的例子,使用的是R中的ggplot()和geom_boxplot函数。

ggplot(train, aes(Outlet_Identifier, Item_Outlet_Sales)) + geom_boxplot(fill = “red”)+

scale_y_continuous(“Item Outlet Sales”, breaks= seq(0,15000, by=500))+

labs(title = “Box Plot”, x = “Outlet Identifier”)

5、 面积图

使用场景:面积图通常用于显示变量和数据的连续性。和线性图很相近,是常用的时序分析方法。另外,它也被用来绘制连续变量和分析的基本趋势。



下面是一个简单的画面积图的例子,用于分析折扣店商品成交数量的走势,使用的是R中的ggplot()和geom_area函数。

ggplot(train, aes(Item_Outlet_Sales)) + geom_area(stat = “bin”, bins = 30, fill = “steelblue”) +

scale_x_continuous(breaks = seq(0,11000,1000))+

labs(title = “Area Chart”, x = “Item Outlet Sales”, y = “Count”)

6、 热点图

热点图用颜色的强度(密度)来显示二维图像中的两个或多个变量之间的关系。可对图表中三个部分的进行信息挖掘,两个坐标和图像颜色深度。



暗的数据表示Item_MRP低于50,亮的数据表示Item_MRP接近250。

下面是R代码,使用了ggplot()函数做简单的热点图。

ggplot(train, aes(Outlet_Identifier, Item_Type))+

geom_raster(aes(fill = Item_MRP))+

labs(title =”Heat Map”, x = “Outlet Identifier”, y = “Item Type”)+

scale_fill_continuous(name = “Item MRP”)

7、 关系图

关系图用作表示连续变量之间的关联性。每个单元可以标注成阴影或颜色来表明关联的程度。颜色越深,代表关联程度越高。正相关用蓝色表示,负相关用红色表示。颜色的深度随着关联程度的递增而递增。



下面是用作简单关系图的R代码,使用的是corrgram()函数。

install.packages(“corrgram”)

library(corrgram)

corrgram(train, order=NULL, panel=panel.shade, text.panel=panel.txt,

main=”Correlogram”)

通过以上的分类介绍和R程序的简单介绍,相信你对R语言的兴趣越来越浓厚了,而已经有基础的同学可以使用R中的ggplot库进行自己的数据可视化分析了。

相关推荐

有些人能留在你的心里,但不能留在你生活里。

有时候,你必须要明白,有些人能留在你的心里,但不能留在你生活里。Sometimes,youhavetorealize,Somepeoplecanstayinyourheart,...

Python学不会来打我(34)python函数爬取百度图片_附源码

随着人工智能和大数据的发展,图像数据的获取变得越来越重要。作为Python初学者,掌握如何从网页中抓取图片并保存到本地是一项非常实用的技能。本文将手把手教你使用Python函数编写一个简单的百度图片...

软网推荐:图像变变变 一“软”见分晓

当我们仅需要改变一些图片的分辨率、裁减尺寸、添加水印、标注文本、更改图片颜色,或将一种图片转换为另一种格式时,总比较讨厌使用一些大型的图像处理软件,尤其是当尚未安装此类软件时,更是如此。实际上,只需一...

首款WP8.1图片搜索应用,搜照片得资料

首款WP8.1图片搜索应用,搜照片得资料出处:IT之家原创(天际)2014-11-1114:32:15评论WP之家报道,《反向图片搜索》(ReverseImageSearch)是Window...

分享一组美图(图片来自头条)(头条美女头像)

...

盗墓笔记电视剧精美海报 盗墓笔记电视剧全集高清种子下载

出身“老九门”世家的吴邪,因身为考古学家的父母在某次保护国家文物行动时被国外盗墓团伙杀害,吴家为保护吴邪安全将他送去德国读书,因而吴邪对“考古”事业有着与生俱来的兴趣。在一次护宝过程中他偶然获得一张...

微软调整Win11 24H2装机策略:6月起36款预装应用改为完整版

IT之家7月16日消息,微软公司今天(7月16日)发布公告,表示自今年6月更新开始,已默认更新Windows1124H2和WindowsServer2025系统中预装...

谷歌手把手教你成为谣言终结者 | 域外

刺猬公社出品,必属原创,严禁转载。合作事宜,请联系微信号:yunlugongby贾宸琰编译、整理11月23日,由谷歌新闻实验室(GoogleNewsLab)联合Bellingcat、DigD...

NAS 部署网盘资源搜索神器:全网资源一键搜,免费看剧听歌超爽!

还在为找不到想看的电影、电视剧、音乐而烦恼?还在各个网盘之间来回切换,浪费大量时间?今天就教你如何在NAS上部署aipan-netdisk-search,一款强大的网盘资源搜索神器,让你全网资源...

使用 Docker Compose 简化 INFINI Console 与 Easysearch 环境搭建

前言回顾在上一篇文章《搭建持久化的INFINIConsole与Easysearch容器环境》中,我们详细介绍了如何使用基础的dockerrun命令,手动启动和配置INFINICon...

为庆祝杜特尔特到访,这个国家宣布全国放假?

(观察者网讯)近日,一篇流传甚广的脸书推文称,为庆祝杜特尔特去年访问印度,印度宣布全国放假,并举办了街头集会以示欢迎。菲媒对此做出澄清,这则消息其实是“假新闻”。据《菲律宾世界日报》2日报道,该贴子...

一课译词:毛骨悚然(毛骨悚然的意思是?)

PhotobyMoosePhotosfromPexels“毛骨悚然”,汉语成语,意思是毛发竖起,脊梁骨发冷;形容恐惧惊骇的样子(withone'shairstandingonend...

Bing Overtakes Google in China's PC Search Market, Fueled by AI and Microsoft Ecosystem

ScreenshotofBingChinahomepageTMTPOST--Inastunningturnintheglobalsearchenginerace,Mic...

找图不求人!6个以图搜图的识图网站推荐

【本文由小黑盒作者@crystalz于03月08日发布,转载请标明出处!】前言以图搜图,专业说法叫“反向图片搜索引擎”,是专门用来搜索相似图片、原始图片或图片来源的方法。常用来寻找现有图片的原始发布出...

浏览器功能和“油管”有什么关联?为什么要下载

现在有没有一款插件可以实现全部的功能,同时占用又小呢,主题主要是网站的一个外观,而且插件则主要是实现wordpress网站的一些功能,它不仅仅可以定制网站的外观,还可以实现很多插件的功能,搭载chro...