百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

通过Apache Spark和Pandas轻松介绍Apache Arrow

bigegpt 2024-10-09 08:10 37 浏览

这次,我将尝试解释如何将Apache Arrow与Apache Spark和Python结合使用。 首先,让我分享有关此开源项目的一些基本概念。

Apache Arrow是用于内存数据的跨语言开发平台。 它为平面和分层数据指定了一种与语言无关的标准化列式存储格式,该格式组织用于在现代硬件上进行有效的分析操作。 [Apache箭头页面]

简而言之,它促进了许多组件之间的通信,例如,使用Python(熊猫)读取实木复合地板文件并转换为Spark数据框,Falcon Data Visualization或Cassandra,而无需担心转换。


一个好问题是问数据在内存中的外观如何? 好吧,Apache Arrow利用列缓冲区来减少IO并加快分析处理性能。

在我们的例子中,我们将使用pyarrow库执行一些基本代码并检查一些功能。 为了安装,我们有两个使用conda或pip命令*的选项。

conda install -c conda-forge pyarrow
pip install pyarrow

*建议在Python 3环境中使用conda。

带有HDFS的Apache Arrow(远程文件系统)

Apache Arrow附带了到Hadoop File System的基于C ++的接口的绑定。 这意味着我们可以从HDFS读取或下载所有文件,并直接使用Python进行解释。

连接

主机是名称节点,端口通常是RPC或WEBHDFS,允许使用更多参数,例如user,kerberos ticket。 强烈建议您阅读所需的环境变量。

import pyarrow as pa
host = '1970.x.x.x'
port = 8022
fs = pa.hdfs.connect(host, port)

· 如果您的连接位于数据或边缘节点的前面,则可以选择使用

fs = pa.hdfs.connect()

将Parquet文件写入HDFS

pq.write_to_dataset(table, root_path='dataset_name', partition_cols=['one', 'two'], filesystem=fs)

从HDFS读取CSV

import pandas as pd
from pyarrow import csv
import pyarrow as pa
fs = pa.hdfs.connect()
with fs.open('iris.csv', 'rb') as f: 
	df = pd.read_csv(f, nrows = 10)
	df.head()

从HDFS读取Parquet文件

有两种形式可以从HDFS读取实木复合地板文件

使用Pandas和Pyarrow引擎

import pandas as pd
pdIris = pd.read_parquet('hdfs:///iris/part-00000–27c8e2d3-fcc9–47ff-8fd1–6ef0b079f30e-c000.snappy.parquet', engine='pyarrow')
pdTrain.head()

Parquet

import pyarrow.parquet as pq
path = 'hdfs:///iris/part-00000–71c8h2d3-fcc9–47ff-8fd1–6ef0b079f30e-c000.snappy.parquet'
table = pq.read_table(path)
table.schema
df = table.to_pandas()
df.head()

其他文件扩展名

由于我们可以存储任何类型的文件(SAS,STATA,Excel,JSON或对象),因此Python可以轻松解释其中的大多数文件。 为此,我们将使用open函数,该函数返回一个缓冲区对象,许多pandas函数(如read_sas,read_json)都可以接收该缓冲区对象作为输入,而不是字符串URL。

SAS

import pandas as pd
import pyarrow as pa
fs = pa.hdfs.connect()
with fs.open('/datalake/airplane.sas7bdat', 'rb') as f: 
	sas_df = pd.read_sas(f, format='sas7bdat')
	sas_df.head()

电子表格

import pandas as pd
import pyarrow as pa
fs = pa.hdfs.connect()
with fs.open('/datalake/airplane.xlsx', 'rb') as f: 
	g.download('airplane.xlsx')
	ex_df = pd.read_excel('airplane.xlsx')

JSON格式

import pandas as pd
import pyarrow as pa
fs = pa.hdfs.connect()
with fs.open('/datalake/airplane.json', 'rb') as f: 
	g.download('airplane.json')
	js_df = pd.read_json('airplane.json')

从HDFS下载文件

如果我们只需要下载文件,Pyarrow为我们提供了下载功能,可以将文件保存在本地。

import pandas as pd
import pyarrow as pa
fs = pa.hdfs.connect()
with fs.open('/datalake/airplane.cs', 'rb') as f: 
	g.download('airplane.cs')

上传文件到HDFS

如果我们只需要下载文件,Pyarrow为我们提供了下载功能,可以将文件保存在本地。

import pyarrow as pa
fs = pa.hdfs.connect()
with open('settings.xml') as f: 
	pa.hdfs.HadoopFileSystem.upload(fs, '/datalake/settings.xml', f)

Apache Arrow with Pandas(本地文件系统)

将Pandas Dataframe转换为Apache Arrow Table

import numpy as np
import pandas as pd
import pyarrow as pa
df = pd.DataFrame({'one': [20, np.nan, 2.5],'two': ['january', 'february', 'march'],'three': [True, False, True]},index=list('abc'))
table = pa.Table.from_pandas(df)

Pyarrow表到Pandas数据框

df_new = table.to_pandas()

读取CSV

from pyarrow import csv
fn = 'data/demo.csv'
table = csv.read_csv(fn)
 Ω

从Apache Arrow编写Parquet文件

import pyarrow.parquet as pq
pq.write_table(table, 'example.parquet')

读取Parquet文件

table2 = pq.read_table('example.parquet')
table2

从parquet文件中读取一些列

table2 = pq.read_table('example.parquet', columns=['one', 'three'])

从分区数据集读取

dataset = pq.ParquetDataset('dataset_name_directory/')
table = dataset.read()
table

将Parquet文件转换为Pandas DataFrame

pdf = pq.read_pandas('example.parquet', columns=['two']).to_pandas()
pdf

避免Pandas指数

table = pa.Table.from_pandas(df, preserve_index=False)
pq.write_table(table, 'example_noindex.parquet')
t = pq.read_table('example_noindex.parquet')
t.to_pandas()

检查元数据

parquet_file = pq.ParquetFile('example.parquet')
parquet_file.metadata

查看数据模式

parquet_file.schema

时间戳记

请记住,Pandas使用纳秒,因此您可以以毫秒为单位截断兼容性。

pq.write_table(table, where, coerce_timestamps='ms')
pq.write_table(table, where, coerce_timestamps='ms', allow_truncated_timestamps=True)

压缩

默认情况下,尽管允许其他编解码器,但Apache arrow使用快速压缩(压缩程度不高,但更易于访问)。

pq.write_table(table, where, compression='snappy')
pq.write_table(table, where, compression='gzip')
pq.write_table(table, where, compression='brotli')
pq.write_table(table, where, compression='none')

另外,在一个表中可以使用多个压缩

pq.write_table(table, 'example_diffcompr.parquet', compression={b'one': 'snappy', b'two': 'gzip'})

编写分区的Parquet表

df = pd.DataFrame({'one': [1, 2.5, 3], 'two': ['Peru', 'Brasil', 'Canada'], 'three': [True, False, True]}, index=list('abc'))
table = pa.Table.from_pandas(df)
pq.write_to_dataset(table, root_path='dataset_name',partition_cols=['one', 'two'])

· 兼容性说明:如果您使用pq.write_to_dataset创建一个供HIVE使用的表,则分区列值必须与您正在运行的HIVE版本的允许字符集兼容。


带有Apache Spark的Apache Arrow

Apache Arrow自2.3版本以来已与Spark集成在一起,它很好地演示了如何优化时间以避免序列化和反序列化过程,并与其他库进行了集成,例如Holden Karau上关于在Spark上加速Tensorflow Apache Arrow的演示。

存在其他有用的文章,例如Brian Cutler发表的文章以及Spark官方文档中的非常好的示例

Apache Arrow的一些有趣用法是:

· 加快从Pandas数据框到Spark数据框的转换

· 加快从Spark数据框到Pandas数据框的转换

· 与Pandas UDF(也称为矢量化UDF)一起使用

· 使用Apache Spark优化R

第三项是下一篇文章的一部分,因为这是一个非常有趣的主题,目的是在不损失性能的情况下扩展Pandas和Spark之间的集成,对于第四项,我建议您阅读该文章(于2019年发布!)以获得 了解更多。

让我们先测试Pandas和Spark之间的转换,而不进行任何修改,然后再使用Arrow。

from pyspark.sql import SparkSession
warehouseLocation = "/antonio"
spark = SparkSession\
  .builder.appName("demoMedium")\
  .config("spark.sql.warehouse.dir", warehouseLocation)\
  .enableHiveSupport()\
  .getOrCreate()

#Create test Spark DataFrame
from pyspark.sql.functions import rand
df = spark.range(1 << 22).toDF("id").withColumn("x", rand())
df.printSchema()

#Benchmark time%time 
pdf = df.toPandas()spark.conf.set("spark.sql.execution.arrow.enabled", "true")
%time 
pdf = df.toPandas()
pdf.describe()

结果显然是使用Arrow减少时间转换更方便。

如果我们需要测试相反的情况(Pandas来激发df),那么我们也会及时发现优化。

%time df = spark.createDataFrame(pdf)
spark.conf.set("spark.sql.execution.arrow.enabled", "false")
%time 
df = spark.createDataFrame(pdf)
df.describe().show()

结论

本文的目的是发现并了解Apache Arrow以及它如何与Apache Spark和Pandas一起使用,我也建议您查看It的官方页面,以进一步了解CUDA或C ++等其他可能的集成,如果您想更深入地了解它, 并了解有关Apache Spark的更多信息,我认为Spark:权威指南是一本很好的书。

附注:如果您有任何疑问,或者想澄清一些问题,可以在Twitter和LinkedIn上找到我。 我最近发表了Apache Druid的简要介绍,这是一个新的Apache项目,非常适合分析数十亿行。


(本文翻译自Antonio Cachuan的文章《A gentle introduction to Apache Arrow with Apache Spark and Pandas》,参考:https://towardsdatascience.com/a-gentle-introduction-to-apache-arrow-with-apache-spark-and-pandas-bb19ffe0ddae)

相关推荐

Go语言泛型-泛型约束与实践(go1.7泛型)

来源:械说在Go语言中,Go泛型-泛型约束与实践部分主要探讨如何定义和使用泛型约束(Constraints),以及如何在实际开发中利用泛型进行更灵活的编程。以下是详细内容:一、什么是泛型约束?**泛型...

golang总结(golang实战教程)

基础部分Go语言有哪些优势?1简单易学:语法简洁,减少了代码的冗余。高效并发:内置强大的goroutine和channel,使并发编程更加高效且易于管理。内存管理:拥有自动垃圾回收机制,减少内...

Go 官宣:新版 Protobuf API(go pro版本)

原文作者:JoeTsai,DamienNeil和HerbieOng原文链接:https://blog.golang.org/a-new-go-api-for-protocol-buffer...

Golang开发的一些注意事项(一)(golang入门项目)

1.channel关闭后读的问题当channel关闭之后再去读取它,虽然不会引发panic,但会直接得到零值,而且ok的值为false。packagemainimport"...

golang 托盘菜单应用及打开系统默认浏览器

之前看到一个应用,用go语言编写,说是某某程序的windows图形化客户端,体验一下发现只是一个托盘,然后托盘菜单的控制面板功能直接打开本地浏览器访问程序启动的webserver网页完成gui相关功...

golang标准库每日一库之 io/ioutil

一、核心函数概览函数作用描述替代方案(Go1.16+)ioutil.ReadFile(filename)一次性读取整个文件内容(返回[]byte)os.ReadFileioutil.WriteFi...

文件类型更改器——GoLang 中的 CLI 工具

我是如何为一项琐碎的工作任务创建一个简单的工具的,你也可以上周我开始玩GoLang,它是一种由Google制作的类C编译语言,非常轻量和快速,事实上它经常在Techempower的基准测...

Go (Golang) 中的 Channels 简介(golang channel长度和容量)

这篇文章重点介绍Channels(通道)在Go中的工作方式,以及如何在代码中使用它们。在Go中,Channels是一种编程结构,它允许我们在代码的不同部分之间移动数据,通常来自不同的goro...

Golang引入泛型:Go将Interface「」替换为“Any”

现在Go将拥有泛型:Go将Interface{}替换为“Any”,这是一个类型别名:typeany=interface{}这会引入了泛型作好准备,实际上,带有泛型的Go1.18Beta...

一文带你看懂Golang最新特性(golang2.0特性)

作者:腾讯PCG代码委员会经过十余年的迭代,Go语言逐渐成为云计算时代主流的编程语言。下到云计算基础设施,上到微服务,越来越多的流行产品使用Go语言编写。可见其影响力已经非常强大。一、Go语言发展历史...

Go 每日一库之 java 转 go 遇到 Apollo?让 agollo 来平滑迁移

以下文章来源于GoOfficialBlog,作者GoOfficialBlogIntroductionagollo是Apollo的Golang客户端Apollo(阿波罗)是携程框架部门研...

Golang使用grpc详解(golang gcc)

gRPC是Google开源的一种高性能、跨语言的远程过程调用(RPC)框架,它使用ProtocolBuffers作为序列化工具,支持多种编程语言,如C++,Java,Python,Go等。gR...

Etcd服务注册与发现封装实现--golang

服务注册register.gopackageregisterimport("fmt""time"etcd3"github.com/cor...

Golang:将日志以Json格式输出到Kafka

在上一篇文章中我实现了一个支持Debug、Info、Error等多个级别的日志库,并将日志写到了磁盘文件中,代码比较简单,适合练手。有兴趣的可以通过这个链接前往:https://github.com/...

如何从 PHP 过渡到 Golang?(php转golang)

我是PHP开发者,转Go两个月了吧,记录一下使用Golang怎么一步步开发新项目。本着有坑填坑,有错改错的宗旨,从零开始,开始学习。因为我司没有专门的Golang大牛,所以我也只能一步步自己去...