百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

R语言对回归模型进行回归诊断 r语言回归分析实验报告

bigegpt 2024-10-12 05:09 5 浏览

在R语言中,对数据进行回归建模是一件很简单的事情,一个lm()函数就可以对数据进行建模了,但是建模了之后大部分人很可能忽略了一件事情就是,对回归模型进行诊断,判断这个模型到低是否模型的假定;如果不符合假定,模型得到的结果和现实中会有巨大的差距,甚至一些参数的检验因此失效。

因为在对回归模型建模的时候我们使用了最小二乘法对模型参数的估计,什么是最小二乘法,通俗易懂的来说就是使得估计的因变量和样本的离差最小,说白了就是估计出来的值误差最小;但是在使用最小二乘法的前提是有几个假设的。

这里我就引用《R语言实战》的内容了,在我大学中的《计量经济学》这本书讲的更为详细,不过这里主要是介绍使用R语言对模型进行回归诊断,所以我们就不说太详细了;

假定

  • 正态性:对于固定的自变量值,因变量值成正态分布,也就是说因变量的是服从正态分布的

  • 独立性:Yi值之间相互独立,也就是说Yi之间不存在自相关

  • 线性:因变量和自变量是线性相关的,如果是非线性相关的话就不可以了

  • 同方差:因变量的方法不随着自变量的水平还不同而变化,也可称之为同方差

为了方便大家使用和对照,这里就使用书上的例子给大家介绍了,在系统自带的安装包中women数据集,我们就想通过身高来预测一下体重;在做回归诊断之前我们得先建模;

首先我们先看一下数据是长什么样子的,因为我们不能盲目的拿到数据后建模,一般稍微规范的点流程是先观察数据的分布情况,判断线性相关系数,然后在考虑是否建立回归模型,然后在进行回归诊断;

R代码如下:

data(‘women’)

women

结果如下

初步观察数据大概告诉我们体重就是跟随着身高增长而增长的,再通过画一下散点图观察。

R代码如下

plot(women)

然后我们在判断一下各个变量之间的线性相关系数,然后再考虑要不要建模

R代码如下

cor(women)

结果如下

从相关系数的结果上看,身高和体重的相关程度高达0.9954,可以认为是完全有关系的。

根据以上的判断我们认为可以建立模型去预测了,这时候我们使用LM()函数去建模,并通过summary函数去得到完整的结果。

R代码如下

model <- lm(weight~height,data=women)

summary(model)

出现这个问号原因是由于电脑字符集问题;稍微解读一下这个结果,RESIDUALS是残差的五分位数,不知道五分位的可以百度一下,这里不多说,下面的结果height的回归系数是3.45,标准差是0.09114,T值为37.85,P值为1.09e-14,并显著通过假设检验,残差的标准差为1.525,可决系数为0.991,认为自变量可以解释总体方差的99.1%,调整后的可决系数为0.9903,这是剔除掉自变量的个数后的可决系数,这个比较有可比性,一般我都看这个调整后的可决系数。结果就解读那么多,因此得到的结果就是

上面只是借用了一个小小例子来讲解了一下R语言做回归模型的过程,接下来我们将一下如何进行回归诊断,还是原来的那个模型,因为使用LM函数中会有一些对结果评价的内容,因此我们用PLOT函数将画出来;

R代码如下

par(mfrow=c(2,2))

plot(model)

结果如下

  • 左上:代表的残差值和拟合值的拟合图,如果模型的因变量和自变量是线性相关的话,残差值和拟合值是没有任何关系的,他们的分布应该是也是在0左右随机分布,但是从结果上看,是一个曲线关系,这就有可能需要我们家一项非线性项进去了

  • 右上:代表正态QQ图,说白了就是标准化后的残差分布图,如果满足正态假定,那么点应该都在45度的直线上,若不是就违反了正态性假

  • 左下:位置尺度图,主要是检验是否同方差的假设,如果是同方差,周围的点应该随机分布

  • 右下:主要是影响点的分析,叫残差与杠杆图,鉴别离群值和高杠杆值和强影响点,说白了就是对模型影响大的点

根据左上的图分布我们可以知道加个非线性项,R语言实战里面是加二次项,这里我取对数,主要是体现理解

R代码如下

model1 <- lm(weight~height+log(height),data=women)

plot(model1)

summary(model1)

结果如下

诊断图

模型拟合结果图

综合起来我们新模型貌似更优了;我就介绍到这里,具体大家可以看书籍

参考文献<R语言实战>

数据分析网(www.afenxi.com),国内领先的大数据门户,旨在帮助大数据从业人士、爱好者提供大数据新闻资讯、前沿技术、业界观点的信息平台。

相关推荐

方差分析简介(方差分析通俗理解)

介绍方差分析(ANOVA,AnalysisofVariance)是一种广泛使用的统计方法,用于比较两个或多个组之间的均值。单因素方差分析是方差分析的一种变体,旨在检测三个或更多分类组的均值是否存在...

正如404页面所预示,猴子正成为断网元凶--吧嗒吧嗒真好吃

吧嗒吧嗒,绘图:MakiNaro你可以通过加热、冰冻、水淹、模塑、甚至压溃压力来使网络光缆硬化。但用猴子显然是不行的。光缆那新挤压成型的塑料外皮太尼玛诱人了,无法阻挡一场试吃盛宴的举行。印度政府正...

Python数据可视化:箱线图多种库画法

概念箱线图通过数据的四分位数来展示数据的分布情况。例如:数据的中心位置,数据间的离散程度,是否有异常值等。把数据从小到大进行排列并等分成四份,第一分位数(Q1),第二分位数(Q2)和第三分位数(Q3)...

多组独立(完全随机设计)样本秩和检验的SPSS操作教程及结果解读

作者/风仕在上一期,我们已经讲完了两组独立样本秩和检验的SPSS操作教程及结果解读,这期开始讲多组独立样本秩和检验,我们主要从多组独立样本秩和检验介绍、两组独立样本秩和检验使用条件及案例的SPSS操作...

方差分析 in R语言 and Excel(方差分析r语言例题)

今天来写一篇实际中比较实用的分析方法,方差分析。通过方差分析,我们可以确定组别之间的差异是否超出了由于随机因素引起的差异范围。方差分析分为单因素方差分析和多因素方差分析,这一篇先介绍一下单因素方差分析...

可视化:前端数据可视化插件大盘点 图表/图谱/地图/关系图

前端数据可视化插件大盘点图表/图谱/地图/关系图全有在大数据时代,很多时候我们需要在网页中显示数据统计报表,从而能很直观地了解数据的走向,开发人员很多时候需要使用图表来表现一些数据。随着Web技术的...

matplotlib 必知的 15 个图(matplotlib各种图)

施工专题,我已完成20篇,施工系列几乎覆盖Python完整技术栈,目标只总结实践中最实用的东西,直击问题本质,快速帮助读者们入门和进阶:1我的施工计划2数字专题3字符串专题4列表专题5流程控制专题6编...

R ggplot2常用图表绘制指南(ggplot2绘制折线图)

ggplot2是R语言中强大的数据可视化包,基于“图形语法”(GrammarofGraphics),通过分层方式构建图表。以下是常用图表命令的详细指南,涵盖基本语法、常见图表类型及示例,适合...

Python数据可视化:从Pandas基础到Seaborn高级应用

数据可视化是数据分析中不可或缺的一环,它能帮助我们直观理解数据模式和趋势。本文将全面介绍Python中最常用的三种可视化方法。Pandas内置绘图功能Pandas基于Matplotlib提供了简洁的绘...

Python 数据可视化常用命令备忘录

本文提供了一个全面的Python数据可视化备忘单,适用于探索性数据分析(EDA)。该备忘单涵盖了单变量分析、双变量分析、多变量分析、时间序列分析、文本数据分析、可视化定制以及保存与显示等内容。所...

统计图的种类(统计图的种类及特点图片)

统计图是利用几何图形或具体事物的形象和地图等形式来表现社会经济现象数量特征和数量关系的图形。以下是几种常见的统计图类型及其适用场景:1.条形图(BarChart)条形图是用矩形条的高度或长度来表示...

实测,大模型谁更懂数据可视化?(数据可视化和可视化分析的主要模型)

大家好,我是Ai学习的老章看论文时,经常看到漂亮的图表,很多不知道是用什么工具绘制的,或者很想复刻类似图表。实测,大模型LaTeX公式识别,出乎预料前文,我用Kimi、Qwen-3-235B...

通过AI提示词让Deepseek快速生成各种类型的图表制作

在数据分析和可视化领域,图表是传达信息的重要工具。然而,传统图表制作往往需要专业的软件和一定的技术知识。本文将介绍如何通过AI提示词,利用Deepseek快速生成各种类型的图表,包括柱状图、折线图、饼...

数据可视化:解析箱线图(box plot)

箱线图/盒须图(boxplot)是数据分布的图形表示,由五个摘要组成:最小值、第一四分位数(25th百分位数)、中位数、第三四分位数(75th百分位数)和最大值。箱子代表四分位距(IQR)。IQR是...

[seaborn] seaborn学习笔记1-箱形图Boxplot

1箱形图Boxplot(代码下载)Boxplot可能是最常见的图形类型之一。它能够很好表示数据中的分布规律。箱型图方框的末尾显示了上下四分位数。极线显示最高和最低值,不包括异常值。seaborn中...