百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

[seaborn] seaborn学习笔记1-箱形图Boxplot

bigegpt 2025-07-17 17:24 6 浏览

1 箱形图Boxplot

(代码下载) Boxplot可能是最常见的图形类型之一。它能够很好表示数据中的分布规律。箱型图方框的末尾显示了上下四分位数。极线显示最高和最低值,不包括异常值。seaborn中用boxplot函数制作箱形图。该章节主要内容有:

  1. 基础箱形图绘制 Basic boxplot and input format
  2. 自定义外观 Custom boxplot appearance
  3. 箱型图的颜色设置 Control colors of boxplot
  4. 分组箱图 Grouped Boxplot
  5. 箱图的顺序设置 Control order of boxplot
  6. 添加散点分布 Add jitter over boxplot
  7. 显示各类的样本数 Show number of observation on boxplot
  8. 箱形图隐藏的数据处理 Hidden data under boxplot
#调用seaborn
import seaborn as sns
#调用seaborn自带数据集
df = sns.load_dataset('iris')
#显示数据集
df.head()


sepal_length

sepal_width

petal_length

petal_width

species

0

5.1

3.5

1.4

0.2

setosa

1

4.9

3.0

1.4

0.2

setosa

2

4.7

3.2

1.3

0.2

setosa

3

4.6

3.1

1.5

0.2

setosa

4

5.0

3.6

1.4

0.2

setosa

1. 基础箱形图绘制 Basic boxplot and input format

  • 一个数值变量 One numerical variable only
  • 一个数值变量和多个分组 One numerical variable, and several groups
  • 多个数值变量 Several numerical variable
  • 水平箱型图 Horizontal boxplot with seaborn
# 一个数值变量 One numerical variable only
# 如果您只有一个数字变量,则可以使用此代码获得仅包含一个组的箱线图。
# Make boxplot for one group only
# 显示花萼长度sepal_length
sns.boxplot( y=df["sepal_length"] );
# 一个数值变量和多个分组 One numerical variable, and several groups
# 假设我们想要研究数值变量的分布,但是对于每个组分别进行研究。在这里,我们研究了3种花的萼片长度。
# x花的品种,y花萼长度
sns.boxplot( x=df["species"], y=df["sepal_length"] );
# 多个数值变量 Several numerical variable
# 可以研究几个数值变量的分布,比如说萼片的长度和宽度:
sns.boxplot(data=df.iloc[:,0:2]);
# 水平箱型图 Horizontal boxplot with seaborn
# 用seaborn将你的箱图水平转动是非常简单的。您可以切换x和y属性,或使用选项orient ="h"
sns.boxplot( y=df["species"], x=df["sepal_length"] );

2. 自定义外观 Custom boxplot appearance

  • 自定义线宽 Custom line width
  • 添加缺口 Add notch
  • 控制箱的尺寸 Control box sizes
# 自定义线宽 Custom line width
# Change line width
# 根据linewidth改变线条宽度
sns.boxplot( x=df["species"], y=df["sepal_length"], linewidth=5);
# 添加缺口 Add notch
# notch设置为true即可
sns.boxplot( x=df["species"], y=df["sepal_length"], notch=True);
# 控制箱的尺寸 Control box sizes
# Change width
sns.boxplot( x=df["species"], y=df["sepal_length"], width=0.3);

3. 箱型图的颜色设置 Control colors of boxplot

  • 调色板的使用 Use a color palette
  • 单种颜色的使用 Uniform color
  • 每组的特定颜色 Specific color for each group
  • 单组高亮 Highlight a group
  • 添加透明色 Add transparency to color
# 调色板的使用 Use a color palette 
# Python提出了几种调色板。您可以像Set1,Set2,Set3,Paired,BuPu一样调用RColorBrewer调色板,还有Blues或BuGn_r等调色板。
# 调色板各种颜色见 http://www.r-graph-gallery.com/38-rcolorbrewers-palettes/
# t通过plaette调用调色板,Use a color palette
sns.boxplot( x=df["species"], y=df["sepal_length"], palette="Blues");
# 单种颜色的使用 Uniform color
# 当然您可以轻松地为每个盒子应用同样的颜色。最常见的是b: blue
# 颜色列表 https://matplotlib.org/examples/color/named_colors.html
sns.boxplot( x=df["species"], y=df["sepal_length"], color="skyblue");
# 每组的特定颜色 Specific color for each group
# 用不用颜色描绘不同种类的花
my_pal = {"versicolor": "g", "setosa": "b", "virginica":"m"}
sns.boxplot( x=df["species"], y=df["sepal_length"], palette=my_pal);
# 单组高亮 Highlight a group
# 设定某一组为红色,其他组为蓝色
my_pal = {species: "r" if species == "versicolor" else "b" for species in df.species.unique()}
sns.boxplot( x=df["species"], y=df["sepal_length"], palette=my_pal);
# 添加透明色 Add transparency to color
# usual boxplot 正常绘图
ax = sns.boxplot(x='species', y='sepal_length', data=df);
# Add transparency to colors 设置透明色
for patch in ax.artists:
    r, g, b, a = patch.get_facecolor()
    patch.set_facecolor((r, g, b, .3))

4. 分组箱图 Grouped Boxplot

# 当您有一个数值变量,几个组和子组时,将使用分组箱图。使用seaborn很容易实现。Y是您的数字变量,x是组列,而hue是子组列。
# 调用tips数据集
df_tips = sns.load_dataset('tips')
df_tips.head()


total_bill

tip

sex

smoker

day

time

size

0

16.99

1.01

Female

No

Sun

Dinner

2

1

10.34

1.66

Male

No

Sun

Dinner

3

2

21.01

3.50

Male

No

Sun

Dinner

3

3

23.68

3.31

Male

No

Sun

Dinner

2

4

24.59

3.61

Female

No

Sun

Dinner

4

# Grouped boxplot 分组箱图
# x日期,y餐费,hue自组列,palette调色盘
sns.boxplot(x="day", y="total_bill", hue="smoker", data=df_tips, palette="Set1");

5. 箱图的顺序设置 Control order of boxplot

#如果您按特定顺序设定组,则箱图通常会提供更多信息。这对seaborn来说是可行的。 
# specific order 通过order自定义组
p1=sns.boxplot(x='species', y='sepal_length', data=df, order=["virginica", "versicolor", "setosa"]);
# 中位数由大到小排列
# Find the order 设定中位数
my_order = df.groupby(by=["species"])["sepal_length"].median().iloc[::-1].index
# Give it to the boxplot
sns.boxplot(x='species', y='sepal_length', data=df, order=my_order);

6. 添加散点分布 Add jitter over boxplot

# 可以在箱线图上添加每种类别的散点分布情况
# Usual boxplot 正常绘图
ax = sns.boxplot(x='species', y='sepal_length', data=df)
# Add jitter with the swarmplot function 添加散点分布
ax = sns.swarmplot(x='species', y='sepal_length', data=df, color="grey")

7. 显示各类的样本数 Show number of observation on boxplot

# 显示每个组的观察次数可能很有用

# 基础的箱形图
ax = sns.boxplot(x="species", y="sepal_length", data=df)
 
# Calculate number of obs per group & median to position labels 
# 计算各个种类的中位数
medians = df.groupby(['species'])['sepal_length'].median().values
# 统计各个种类的样本数
nobs = df['species'].value_counts().values
nobs = [str(x) for x in nobs.tolist()]
nobs = ["n: " + i for i in nobs]
 
# Add it to the plot 
pos = range(len(nobs))
for tick,label in zip(pos,ax.get_xticklabels()):
    ax.text(pos[tick], medians[tick] + 0.03, nobs[tick], horiznotallow='center', size='x-small', color='w', weight='semibold')

8. 箱形图隐藏的数据处理 Hidden data under boxplot

  • 添加分布散点图 boxplot with jitter
  • 使用小提琴图 use violinplot

箱形图总结了几个组的数值变量的分布。但是箱形图的问题不仅是丢失信息,这可能会结果有偏差。如果我们考虑下面的箱形图,很容易得出结论,'C’组的价值高于其他组。但是,我们无法看到每个组中点的基本分布是什么,也没有观察每个组的观察次数。所以我们需要对隐藏的数据进行处理

# libraries and data
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# Dataset:
a = pd.DataFrame({ 'group' : np.repeat('A',500), 'value': np.random.normal(10, 5, 500) })
b = pd.DataFrame({ 'group' : np.repeat('B',500), 'value': np.random.normal(13, 1.2, 500) })
c = pd.DataFrame({ 'group' : np.repeat('B',500), 'value': np.random.normal(18, 1.2, 500) })
d = pd.DataFrame({ 'group' : np.repeat('C',20), 'value': np.random.normal(25, 4, 20) })
e = pd.DataFrame({ 'group' : np.repeat('D',100), 'value': np.random.uniform(12, size=100) })
df=a.append(b).append(c).append(d).append(e)
 
# Usual boxplot
sns.boxplot(x='group', y='value', data=df);
# 添加分布散点图 boxplot with jitter
ax = sns.boxplot(x='group', y='value', data=df)
# 通过stripplot添加分布散点图,jitter设置数据间距
ax = sns.stripplot(x='group', y='value', data=df, color="orange", jitter=0.2, size=2.5)
plt.title("Boxplot with jitter", loc="left")
Text(0.0, 1.0, 'Boxplot with jitter')
# 使用小提琴图 use violinplot
sns.violinplot( x='group', y='value', data=df)
plt.title("Violin plot", loc="left")
Text(0.0, 1.0, 'Violin plot')

相关推荐

方差分析简介(方差分析通俗理解)

介绍方差分析(ANOVA,AnalysisofVariance)是一种广泛使用的统计方法,用于比较两个或多个组之间的均值。单因素方差分析是方差分析的一种变体,旨在检测三个或更多分类组的均值是否存在...

正如404页面所预示,猴子正成为断网元凶--吧嗒吧嗒真好吃

吧嗒吧嗒,绘图:MakiNaro你可以通过加热、冰冻、水淹、模塑、甚至压溃压力来使网络光缆硬化。但用猴子显然是不行的。光缆那新挤压成型的塑料外皮太尼玛诱人了,无法阻挡一场试吃盛宴的举行。印度政府正...

Python数据可视化:箱线图多种库画法

概念箱线图通过数据的四分位数来展示数据的分布情况。例如:数据的中心位置,数据间的离散程度,是否有异常值等。把数据从小到大进行排列并等分成四份,第一分位数(Q1),第二分位数(Q2)和第三分位数(Q3)...

多组独立(完全随机设计)样本秩和检验的SPSS操作教程及结果解读

作者/风仕在上一期,我们已经讲完了两组独立样本秩和检验的SPSS操作教程及结果解读,这期开始讲多组独立样本秩和检验,我们主要从多组独立样本秩和检验介绍、两组独立样本秩和检验使用条件及案例的SPSS操作...

方差分析 in R语言 and Excel(方差分析r语言例题)

今天来写一篇实际中比较实用的分析方法,方差分析。通过方差分析,我们可以确定组别之间的差异是否超出了由于随机因素引起的差异范围。方差分析分为单因素方差分析和多因素方差分析,这一篇先介绍一下单因素方差分析...

可视化:前端数据可视化插件大盘点 图表/图谱/地图/关系图

前端数据可视化插件大盘点图表/图谱/地图/关系图全有在大数据时代,很多时候我们需要在网页中显示数据统计报表,从而能很直观地了解数据的走向,开发人员很多时候需要使用图表来表现一些数据。随着Web技术的...

matplotlib 必知的 15 个图(matplotlib各种图)

施工专题,我已完成20篇,施工系列几乎覆盖Python完整技术栈,目标只总结实践中最实用的东西,直击问题本质,快速帮助读者们入门和进阶:1我的施工计划2数字专题3字符串专题4列表专题5流程控制专题6编...

R ggplot2常用图表绘制指南(ggplot2绘制折线图)

ggplot2是R语言中强大的数据可视化包,基于“图形语法”(GrammarofGraphics),通过分层方式构建图表。以下是常用图表命令的详细指南,涵盖基本语法、常见图表类型及示例,适合...

Python数据可视化:从Pandas基础到Seaborn高级应用

数据可视化是数据分析中不可或缺的一环,它能帮助我们直观理解数据模式和趋势。本文将全面介绍Python中最常用的三种可视化方法。Pandas内置绘图功能Pandas基于Matplotlib提供了简洁的绘...

Python 数据可视化常用命令备忘录

本文提供了一个全面的Python数据可视化备忘单,适用于探索性数据分析(EDA)。该备忘单涵盖了单变量分析、双变量分析、多变量分析、时间序列分析、文本数据分析、可视化定制以及保存与显示等内容。所...

统计图的种类(统计图的种类及特点图片)

统计图是利用几何图形或具体事物的形象和地图等形式来表现社会经济现象数量特征和数量关系的图形。以下是几种常见的统计图类型及其适用场景:1.条形图(BarChart)条形图是用矩形条的高度或长度来表示...

实测,大模型谁更懂数据可视化?(数据可视化和可视化分析的主要模型)

大家好,我是Ai学习的老章看论文时,经常看到漂亮的图表,很多不知道是用什么工具绘制的,或者很想复刻类似图表。实测,大模型LaTeX公式识别,出乎预料前文,我用Kimi、Qwen-3-235B...

通过AI提示词让Deepseek快速生成各种类型的图表制作

在数据分析和可视化领域,图表是传达信息的重要工具。然而,传统图表制作往往需要专业的软件和一定的技术知识。本文将介绍如何通过AI提示词,利用Deepseek快速生成各种类型的图表,包括柱状图、折线图、饼...

数据可视化:解析箱线图(box plot)

箱线图/盒须图(boxplot)是数据分布的图形表示,由五个摘要组成:最小值、第一四分位数(25th百分位数)、中位数、第三四分位数(75th百分位数)和最大值。箱子代表四分位距(IQR)。IQR是...

[seaborn] seaborn学习笔记1-箱形图Boxplot

1箱形图Boxplot(代码下载)Boxplot可能是最常见的图形类型之一。它能够很好表示数据中的分布规律。箱型图方框的末尾显示了上下四分位数。极线显示最高和最低值,不包括异常值。seaborn中...