百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

基于Amos路径分析的软件输出结果界面与参数详解

bigegpt 2024-10-12 05:10 8 浏览

??系列文章共有四篇,本文为第二篇,主要由整体层面关注输出结果参数。

??博客1(https://blog.csdn.net/zhebushibiaoshifu/article/details/114333349):基于Amos的路径分析与模型参数详解

??博客3(https://blog.csdn.net/zhebushibiaoshifu/article/details/114377622):基于Amos路径分析的模型拟合参数详解

??博客4(https://blog.csdn.net/zhebushibiaoshifu/article/details/114385378):基于Amos路径分析的模型修正与调整

??在博客1(https://blog.csdn.net/zhebushibiaoshifu/article/details/114333349)中,我们详细介绍了基于Amos的路径分析的操作过程与模型参数,同时对部分模型所输出的结果加以一定解释;但由于Amos所输出的各项信息内容非常丰富,因此我们有必要对软件所输出的各类参数加以更为详尽的解读。其中,本文主要对输出的全部参数加以整体性质的介绍,而对于与模型拟合程度相关的模型拟合参数,大家可以在博客3(https://blog.csdn.net/zhebushibiaoshifu/article/details/114377622)、博客4(https://blog.csdn.net/zhebushibiaoshifu/article/details/114385378)中查看更详细的解读。

1 Output path diagram

??首先,通过上一篇博客(https://blog.csdn.net/zhebushibiaoshifu/article/details/114333349),我们已经知道可以在“Output path diagram”模块,对模型的非标准化结果与标准化结果加以显示。如下图,若为非标准化结果,自变量、残差旁的数字代表其方差;而对于标准化结果,箭头旁的数字代表对应回归方程的R方。具体请见这篇博客(https://blog.csdn.net/zhebushibiaoshifu/article/details/114333349)。

2 Amos Output

??点击软件左侧“View Text”按钮,可以查看更为详细的模型结果。

??我们就由上到下,依次解释每一个界面的含义。

2.1 Analysis Summary

??这里是模型分析的摘要,包括模型运行的时间与标题。

2.2 Notes for Group

??这里是对模型的备注。

??首先,“The model is recursive.”代表着这一模型是一个递归模型。递归模型,顾名思义是内生变量间因果关系为单方向的结构方程模型;换句话讲,递归模型中任何一个变量,不能既是另一个变量的起因,且又同时是其效应。

??其次,“Sample size”则代表了样本个数。

2.3 Variable Summary

??这里是对模型中各种变量的总结。

??首先,“Observed,endogenous variables”即“观测变量、内生变量”。观测变量就是可以被观测、测量而直接得到的变量(本文中所有土壤属性与对应的环境变量都是已知的,也就是可以直接测量的)。内生变量就是被其它自变量预测的变量,可以认为相当于是一个因变量;但要注意,尽管内生变量多作为因变量,但也可能作为影响他人的自变量,例如本文中的内生变量POI,可以影响Temp,又受到GAIA与RoDen影响。内生变量在Amos中突出的特点即为其被箭头所指,或者说其有一个残差项(这是因为AMOS路径图表示的为线性回归模型,因此所有因变量都需要加上一个残差)。

??其次,“Observed,exogenous variables”即“观测变量、外生变量”。外生变量即为不受任何其他变量影响,但影响他人的变量。其在路径图中就是没有被任何一个箭头指到的变量。

??再接下来的一栏“Unobserved,exogenous variables”,相信大家都可以看出了,是“非观测变量、外生变量”。非观测变量又叫做潜在变量,是指不能直接进行测量,但可以通过观察变量从而进行大致衡量、测度的变量。那么在本文中,所用的残差就都是非观测变量了。

??最后一栏“Variables counts”,就是不同变量的计数。

2.4 Parameter Summary

??这里是模型中不同种类的变量摘要。

??我们首先看表格的第一行。“Weights”为“回归权重”,我认为就是回归系数;“Covariances”为“协方差”;“Variances”为“方差”;“Means”为“平均值”;“Intercepts”为“截距”。

??再看表格的第一列。“Fixed”表示模型中值已经被固定为一个常数的参数;“Labeled”表示模型中值已经带有标签的参数;“Unlabeled”表示模型中既没有被固定值,也没有带上标签的参数,这一类参数可以取任意值(当然,对于Labeled的参数,只要其Label为唯一的,其也可以取任意值)。

2.5 Assessment of normality

??这里是对模型中变量的正态分布检验,对应着当初“Output”中我们勾选的“Test for normality and outliers”选项(如下下图所示)。

??我们首先看表格的第一行。“min”与“max”分别代表变量的“最小值”与“最大值”;“skew”为“偏度”(skewness),是统计一组数字非对称程度的度量,数据符合正态分布时为0,右偏分布(正偏分布)时大于0,左偏分布(负偏分布)时小于0;“c.r.”个人认为应该是“C-R下界”;“kurtosis”为“峰度”,表示一组数据在平均值处峰值的高低,峰越尖,峰度越小,峰越厚,峰度越大。
??随后,需要注意最后一行“Multivariate”表示“多元变量”。

2.6 Observation farthest from the centroid (Mahalanobis distance)

??这里是对模型中变量的异常值检验,同样对应着当初“Output”中我们勾选的“Test for normality and outliers”选项。

??表格第一列“Observation number”是每一个异常值对应的数据编号;“Mahalanobis d-squared”可以视作距离的度量,其越大数据越有可能是异常值。

2.7 Sample Moments

??这里是样本矩,对应着当初“Output”中我们勾选的“Test for normality and outliers”选项。

??其中,第一个“Sample Covariances”为“样本协方差矩阵”,其具体计算会随当初“Bias”中我们勾选的“Covariances to be analyzed”选项类型而改变。其中,对角线上为样本自身的方差,其余地方为样本之间的协方差。

??接下来,第二个“Condition number”为协方差矩阵的“条件编号”,其等于矩阵的最大特征值除以最小特征值。

??第三个“Eigenvalues”为协方差矩阵的“特征值”。

??第四个“Determinant of sample covariance matrix”为协方差矩阵的“行列式”。在正定协方差矩阵的情况下,行列式接近零表示至少一个观察到的变量几乎线性依赖于其他变量。 其结果取决于指定的模型和差异函数。从数值的角度来看,行列式接近于零可能使得难以估计模型的参数。从统计的角度来看,行列式接近于零可能意味着对某些参数的估计不佳(将显示为较大的估计标准误差)。

??第五个“Sample Correlations”表示“样本相关系数矩阵”。其对应着当初“Output”中我们勾选的“Standardized estimates”选项。

??第六个“Condition number”表示相关矩阵的“条件编号”,样本相关矩阵的条件编号是其最大特征值除以其最小特征值。

??第七个“Eigenvalues”为相关矩阵的“特征值”。

2.8 Notes for Model

??这里为模型整体情况的备注,与单个模型有关的消息出现在此处。

??第一个“Computation of degrees of freedom”显示了Amos如何达成当前的自由度结果——自由度即不同样本矩的数量与必须估计的不同参数的数量之间的差异。

??第二个“Minimum was achieved”表示模型达到了局部最优解。

??接下来两个分别代表着卡方值与自由度。

??接下来的“Probability level”表示:如果满足适当的分布假设,且当前模型是正确的,则其值是获得与从当前数据集获得的卡方统计量一样大的卡方统计量的近似概率。例如,如果该值等于或小于0.05,则数据与模型的偏离在0.05级别上是显著的。

2.9 Estimates

??第一个“Scalar Estimates”为“标量估计”。

??第二个“Maximum Likelihood Estimates”为“最大似然估计”。

??接下来,“Regression Weights”为回归系数估计。表格中第一行,“Estimate”为实际估计值;“S.E.”为“近似标准误差”,其不适用于相关性和标准化回归系数,也不适用于ULS或SLS估计方法;“C.R.”为“临界比率”,其是参数估计值除以其标准误差的估计值。如果满足适当的分布假设,则该统计量在参数的总体值为零的零假设下具有标准正态分布。例如,如果某个估计的临界比率大于2(以绝对值计),则该估计在0.05级别与零显著不同。即使没有分布假设,临界比率也具有以下解释:对于任何不受约束的参数,其临界比率的平方大约是在固定该参数固定为零的情况下重复进行分析,卡方统计量将增加的量(其不适用于相关性和标准化回归系数,也不适用于ULS或SLS估计);“P”就是“p值”,若小于0.001就用“***”表示,说明自变量对因变量有显著性影响;“Label”为“标签列”,如果前期已命名参数,则该名称将显示在此列中。我们需要知道参数的名称,以便读取参数之间的协方差、参数之间的相关性以及参数之间差异的临界比率的显示。如有必要,Amos会为我们尚未命名的任何参数命名,且这一名称将与我们提供的名称一起出现在标签列中。

??随后,“Standardized Regression Weights”为“标准化回归系数”。

2.10 Modification Indices

??“Modification Indices”为“修改索引值”。修改索引大于指定阈值的每个参数将显示在此处,并在标记为的列中显示:

??“M.I”:修改索引

??“Par Change”:估计参数变化

2.11 Minimization History

??“Minimization History”表示每一次迭代中,误差函数的数值。其对应着当初“Output”中我们勾选的“Minimization history”选项。

2.12 Pairwise Parameter Comparisons

??这一模块为模型中全部参数的两两比较,包括方差/协方差与相关系数。其对应着当初“Output”中我们勾选的如下两个选项。

2.13 Model Fit

??这一部分为模型整体的拟合情况衡量参数。关于这一部分参数更为细致的介绍请看这篇博客(https://blog.csdn.net/zhebushibiaoshifu/article/details/114377622)。

2.14 Execution Time

??这一模块展示了模型的运行时间。

相关推荐

方差分析简介(方差分析通俗理解)

介绍方差分析(ANOVA,AnalysisofVariance)是一种广泛使用的统计方法,用于比较两个或多个组之间的均值。单因素方差分析是方差分析的一种变体,旨在检测三个或更多分类组的均值是否存在...

正如404页面所预示,猴子正成为断网元凶--吧嗒吧嗒真好吃

吧嗒吧嗒,绘图:MakiNaro你可以通过加热、冰冻、水淹、模塑、甚至压溃压力来使网络光缆硬化。但用猴子显然是不行的。光缆那新挤压成型的塑料外皮太尼玛诱人了,无法阻挡一场试吃盛宴的举行。印度政府正...

Python数据可视化:箱线图多种库画法

概念箱线图通过数据的四分位数来展示数据的分布情况。例如:数据的中心位置,数据间的离散程度,是否有异常值等。把数据从小到大进行排列并等分成四份,第一分位数(Q1),第二分位数(Q2)和第三分位数(Q3)...

多组独立(完全随机设计)样本秩和检验的SPSS操作教程及结果解读

作者/风仕在上一期,我们已经讲完了两组独立样本秩和检验的SPSS操作教程及结果解读,这期开始讲多组独立样本秩和检验,我们主要从多组独立样本秩和检验介绍、两组独立样本秩和检验使用条件及案例的SPSS操作...

方差分析 in R语言 and Excel(方差分析r语言例题)

今天来写一篇实际中比较实用的分析方法,方差分析。通过方差分析,我们可以确定组别之间的差异是否超出了由于随机因素引起的差异范围。方差分析分为单因素方差分析和多因素方差分析,这一篇先介绍一下单因素方差分析...

可视化:前端数据可视化插件大盘点 图表/图谱/地图/关系图

前端数据可视化插件大盘点图表/图谱/地图/关系图全有在大数据时代,很多时候我们需要在网页中显示数据统计报表,从而能很直观地了解数据的走向,开发人员很多时候需要使用图表来表现一些数据。随着Web技术的...

matplotlib 必知的 15 个图(matplotlib各种图)

施工专题,我已完成20篇,施工系列几乎覆盖Python完整技术栈,目标只总结实践中最实用的东西,直击问题本质,快速帮助读者们入门和进阶:1我的施工计划2数字专题3字符串专题4列表专题5流程控制专题6编...

R ggplot2常用图表绘制指南(ggplot2绘制折线图)

ggplot2是R语言中强大的数据可视化包,基于“图形语法”(GrammarofGraphics),通过分层方式构建图表。以下是常用图表命令的详细指南,涵盖基本语法、常见图表类型及示例,适合...

Python数据可视化:从Pandas基础到Seaborn高级应用

数据可视化是数据分析中不可或缺的一环,它能帮助我们直观理解数据模式和趋势。本文将全面介绍Python中最常用的三种可视化方法。Pandas内置绘图功能Pandas基于Matplotlib提供了简洁的绘...

Python 数据可视化常用命令备忘录

本文提供了一个全面的Python数据可视化备忘单,适用于探索性数据分析(EDA)。该备忘单涵盖了单变量分析、双变量分析、多变量分析、时间序列分析、文本数据分析、可视化定制以及保存与显示等内容。所...

统计图的种类(统计图的种类及特点图片)

统计图是利用几何图形或具体事物的形象和地图等形式来表现社会经济现象数量特征和数量关系的图形。以下是几种常见的统计图类型及其适用场景:1.条形图(BarChart)条形图是用矩形条的高度或长度来表示...

实测,大模型谁更懂数据可视化?(数据可视化和可视化分析的主要模型)

大家好,我是Ai学习的老章看论文时,经常看到漂亮的图表,很多不知道是用什么工具绘制的,或者很想复刻类似图表。实测,大模型LaTeX公式识别,出乎预料前文,我用Kimi、Qwen-3-235B...

通过AI提示词让Deepseek快速生成各种类型的图表制作

在数据分析和可视化领域,图表是传达信息的重要工具。然而,传统图表制作往往需要专业的软件和一定的技术知识。本文将介绍如何通过AI提示词,利用Deepseek快速生成各种类型的图表,包括柱状图、折线图、饼...

数据可视化:解析箱线图(box plot)

箱线图/盒须图(boxplot)是数据分布的图形表示,由五个摘要组成:最小值、第一四分位数(25th百分位数)、中位数、第三四分位数(75th百分位数)和最大值。箱子代表四分位距(IQR)。IQR是...

[seaborn] seaborn学习笔记1-箱形图Boxplot

1箱形图Boxplot(代码下载)Boxplot可能是最常见的图形类型之一。它能够很好表示数据中的分布规律。箱型图方框的末尾显示了上下四分位数。极线显示最高和最低值,不包括异常值。seaborn中...