OpenCV-Python 轮廓特征 | 二十二
bigegpt 2024-10-12 05:41 10 浏览
目标
在本文中,我们将学习
- 如何找到轮廓的不同特征,例如面积,周长,质心,边界框等。
- 您将看到大量与轮廓有关的功能。
1. 特征矩
特征矩可以帮助您计算一些特征,例如物体的质心,物体的面积等。请查看特征矩上的维基百科页面。函数cv.moments()提供了所有计算出的矩值的字典。见下文:
import numpy as np
import cv2 as cv
img = cv.imread('star.jpg',0)
ret,thresh = cv.threshold(img,127,255,0)
contours,hierarchy = cv.findContours(thresh, 1, 2)
cnt = contours[0]
M = cv.moments(cnt)
print( M )
从这一刻起,您可以提取有用的数据,例如面积,质心等。质心由关系给出,$Cx = frac{M{10}}{M{00}}$ 和 $Cy = frac{M{01}}{M{00}}$。可以按照以下步骤进行:
cx = int(M['m10']/M['m00'])
cy = int(M['m01']/M['m00'])
2. 轮廓面积
轮廓区域由函数cv.contourArea()或从矩M['m00']中给出。
area = cv.contourArea(cnt)
3. 轮廓周长
也称为弧长。可以使用cv.arcLength()函数找到它。第二个参数指定形状是闭合轮廓(True)还是曲线。
perimeter = cv.arcLength(cnt,True)
4. 轮廓近似
根据我们指定的精度,它可以将轮廓形状近似为顶点数量较少的其他形状。它是Douglas-Peucker算法的实现。检查维基百科页面上的算法和演示。
为了理解这一点,假设您试图在图像中找到一个正方形,但是由于图像中的某些问题,您没有得到一个完美的正方形,而是一个“坏形状”(如下图所示)。现在,您可以使用此功能来近似形状。在这种情况下,第二个参数称为epsilon,它是从轮廓到近似轮廓的最大距离。它是一个精度参数。需要正确选择epsilon才能获得正确的输出。
epsilon = 0.1*cv.arcLength(cnt,True)
approx = cv.approxPolyDP(cnt,epsilon,True)
下面,在第二张图片中,绿线显示了ε=弧长的10%时的近似曲线。第三幅图显示了ε=弧长度的1%时的情况。第三个参数指定曲线是否闭合。
5. 轮廓凸包
凸包外观看起来与轮廓逼近相似,但不相似(在某些情况下两者可能提供相同的结果)。在这里,cv.convexHull()函数检查曲线是否存在凸凹缺陷并对其进行校正。一般而言,凸曲线是始终凸出或至少平坦的曲线。如果在内部凸出,则称为凸度缺陷。例如,检查下面的手的图像。红线显示手的凸包。双向箭头标记显示凸度缺陷,这是凸包与轮廓线之间的局部最大偏差。
关于它的语法,有一些需要讨论:
hull = cv.convexHull(points[, hull[, clockwise[, returnPoints]]
参数详细信息:
- 点是我们传递到的轮廓。
- 凸包是输出,通常我们忽略它。
- 顺时针方向:方向标记。如果为True,则输出凸包为顺时针方向。否则,其方向为逆时针方向。
- returnPoints:默认情况下为True。然后返回凸包的坐标。如果为False,则返回与凸包点相对应的轮廓点的索引。
因此,要获得如上图所示的凸包,以下内容就足够了:
hull = cv.convexHull(cnt)
但是,如果要查找凸度缺陷,则需要传递returnPoints = False。为了理解它,我们将拍摄上面的矩形图像。首先,我发现它的轮廓为cnt。现在,我发现它的带有returnPoints = True的凸包,得到以下值:[[[234 202]],[[51 202]],[[51 79]],[[234 79]]],它们是四个角 矩形的点。现在,如果对returnPoints = False执行相同的操作,则会得到以下结果:[[129],[67],[0],[142]]。这些是轮廓中相应点的索引。例如,检查第一个值:cnt [129] = [[234,202]]与第一个结果相同(对于其他结果依此类推)。
当我们讨论凸度缺陷时,您将再次看到它。
6. 检查凸度
cv.isContourConvex()具有检查曲线是否凸出的功能。它只是返回True还是False。没什么大不了的。
k = cv.isContourConvex(cnt)
7. 边界矩形
有两种类型的边界矩形。
7.a.直角矩形
它是一个矩形,不考虑物体的旋转。所以边界矩形的面积不是最小的。它是由函数cv.boundingRect()找到的。
令(x,y)为矩形的左上角坐标,而(w,h)为矩形的宽度和高度。
x,y,w,h = cv.boundingRect(cnt)
cv.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
7.b. 旋转矩形
这里,边界矩形是用最小面积绘制的,所以它也考虑了旋转。使用的函数是cv.minAreaRect()。它返回一个Box2D结构,其中包含以下细节 -(中心(x,y),(宽度,高度),旋转角度)。但要画出这个矩形,我们需要矩形的四个角。它由函数cv.boxPoints()获得
rect = cv.minAreaRect(cnt)
box = cv.boxPoints(rect)
box = np.int0(box)
cv.drawContours(img,[box],0,(0,0,255),2)
两个矩形都显示在一张单独的图像中。绿色矩形显示正常的边界矩形。红色矩形是旋转后的矩形。
8. 最小闭合圈
接下来,使用函数**cv.minEnclosingCircle(*()查找对象的圆周。它是一个以最小面积完全覆盖物体的圆。
(x,y),radius = cv.minEnclosingCircle(cnt)
center = (int(x),int(y))
radius = int(radius)
cv.circle(img,center,radius,(0,255,0),2)
9. 拟合一个椭圆
下一个是把一个椭圆拟合到一个物体上。它返回内接椭圆的旋转矩形。
ellipse = cv.fitEllipse(cnt)
cv.ellipse(img,ellipse,(0,255,0),2)
10. 拟合直线
同样,我们可以将一条直线拟合到一组点。下图包含一组白点。我们可以近似一条直线。
rows,cols = img.shape[:2]
[vx,vy,x,y] = cv.fitLine(cnt, cv.DIST_L2,0,0.01,0.01)
lefty = int((-x*vy/vx) + y)
righty = int(((cols-x)*vy/vx)+y)
cv.line(img,(cols-1,righty),(0,lefty),(0,255,0),2)
相关推荐
- 当Frida来“敲”门(frida是什么)
-
0x1渗透测试瓶颈目前,碰到越来越多的大客户都会将核心资产业务集中在统一的APP上,或者对自己比较重要的APP,如自己的主业务,办公APP进行加壳,流量加密,投入了很多精力在移动端的防护上。而现在挖...
- 服务端性能测试实战3-性能测试脚本开发
-
前言在前面的两篇文章中,我们分别介绍了性能测试的理论知识以及性能测试计划制定,本篇文章将重点介绍性能测试脚本开发。脚本开发将分为两个阶段:阶段一:了解各个接口的入参、出参,使用Python代码模拟前端...
- Springboot整合Apache Ftpserver拓展功能及业务讲解(三)
-
今日分享每天分享技术实战干货,技术在于积累和收藏,希望可以帮助到您,同时也希望获得您的支持和关注。架构开源地址:https://gitee.com/msxyspringboot整合Ftpserver参...
- Linux和Windows下:Python Crypto模块安装方式区别
-
一、Linux环境下:fromCrypto.SignatureimportPKCS1_v1_5如果导包报错:ImportError:Nomodulenamed'Crypt...
- Python 3 加密简介(python des加密解密)
-
Python3的标准库中是没多少用来解决加密的,不过却有用于处理哈希的库。在这里我们会对其进行一个简单的介绍,但重点会放在两个第三方的软件包:PyCrypto和cryptography上,我...
- 怎样从零开始编译一个魔兽世界开源服务端Windows
-
第二章:编译和安装我是艾西,上期我们讲述到编译一个魔兽世界开源服务端环境准备,那么今天跟大家聊聊怎么编译和安装我们直接进入正题(上一章没有看到的小伙伴可以点我主页查看)编译服务端:在D盘新建一个文件夹...
- 附1-Conda部署安装及基本使用(conda安装教程)
-
Windows环境安装安装介质下载下载地址:https://www.anaconda.com/products/individual安装Anaconda安装时,选择自定义安装,选择自定义安装路径:配置...
- 如何配置全世界最小的 MySQL 服务器
-
配置全世界最小的MySQL服务器——如何在一块IntelEdison为控制板上安装一个MySQL服务器。介绍在我最近的一篇博文中,物联网,消息以及MySQL,我展示了如果Partic...
- 如何使用Github Action来自动化编译PolarDB-PG数据库
-
随着PolarDB在国产数据库领域荣膺桂冠并持续获得广泛认可,越来越多的学生和技术爱好者开始关注并涉足这款由阿里巴巴集团倾力打造且性能卓越的关系型云原生数据库。有很多同学想要上手尝试,却卡在了编译数据...
- 面向NDK开发者的Android 7.0变更(ndk android.mk)
-
订阅Google官方微信公众号:谷歌开发者。与谷歌一起创造未来!受Android平台其他改进的影响,为了方便加载本机代码,AndroidM和N中的动态链接器对编写整洁且跨平台兼容的本机...
- 信创改造--人大金仓(Kingbase)数据库安装、备份恢复的问题纪要
-
问题一:在安装KingbaseES时,安装用户对于安装路径需有“读”、“写”、“执行”的权限。在Linux系统中,需要以非root用户执行安装程序,且该用户要有标准的home目录,您可...
- OpenSSH 安全漏洞,修补操作一手掌握
-
1.漏洞概述近日,国家信息安全漏洞库(CNNVD)收到关于OpenSSH安全漏洞(CNNVD-202407-017、CVE-2024-6387)情况的报送。攻击者可以利用该漏洞在无需认证的情况下,通...
- Linux:lsof命令详解(linux lsof命令详解)
-
介绍欢迎来到这篇博客。在这篇博客中,我们将学习Unix/Linux系统上的lsof命令行工具。命令行工具是您使用CLI(命令行界面)而不是GUI(图形用户界面)运行的程序或工具。lsoflsof代表&...
- 幻隐说固态第一期:固态硬盘接口类别
-
前排声明所有信息来源于网络收集,如有错误请评论区指出更正。废话不多说,目前固态硬盘接口按速度由慢到快分有这几类:SATA、mSATA、SATAExpress、PCI-E、m.2、u.2。下面我们来...
- 新品轰炸 影驰SSD多款产品登Computex
-
分享泡泡网SSD固态硬盘频道6月6日台北电脑展作为全球第二、亚洲最大的3C/IT产业链专业展,吸引了众多IT厂商和全球各地媒体的热烈关注,全球存储新势力—影驰,也积极参与其中,为广大玩家朋友带来了...
- 一周热门
- 最近发表
-
- 当Frida来“敲”门(frida是什么)
- 服务端性能测试实战3-性能测试脚本开发
- Springboot整合Apache Ftpserver拓展功能及业务讲解(三)
- Linux和Windows下:Python Crypto模块安装方式区别
- Python 3 加密简介(python des加密解密)
- 怎样从零开始编译一个魔兽世界开源服务端Windows
- 附1-Conda部署安装及基本使用(conda安装教程)
- 如何配置全世界最小的 MySQL 服务器
- 如何使用Github Action来自动化编译PolarDB-PG数据库
- 面向NDK开发者的Android 7.0变更(ndk android.mk)
- 标签列表
-
- mybatiscollection (79)
- mqtt服务器 (88)
- keyerror (78)
- c#map (65)
- resize函数 (64)
- xftp6 (83)
- bt搜索 (75)
- c#var (76)
- mybatis大于等于 (64)
- xcode-select (66)
- mysql授权 (74)
- 下载测试 (70)
- linuxlink (65)
- pythonwget (67)
- androidinclude (65)
- libcrypto.so (74)
- logstashinput (65)
- hadoop端口 (65)
- vue阻止冒泡 (67)
- jquery跨域 (68)
- php写入文件 (73)
- kafkatools (66)
- mysql导出数据库 (66)
- jquery鼠标移入移出 (71)
- 取小数点后两位的函数 (73)