百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

基于opencv实现人脸识别案例 opencv人脸识别实验原理

bigegpt 2024-10-12 05:42 10 浏览

一、基础

我们使用机器学习的方法完成人脸检测,首先需要大量的正样本图像(面部图像)和负样本图像(不含面部的图像)来训练分类器。我们需要从其中提取特征。下图中的 Haar 特征会被使用,就像我们的卷积核,每一个特征是一个值,这个值等于黑色矩形中的像素值之后减去白色矩形中的像素值之和。

Haar特征值反映了图像的灰度变化情况。例如:脸部的一些特征能由矩形特征简单的描述,眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等。

Haar特征可用于于图像任意位置,大小也可以任意改变,所以矩形特征值是矩形模版类别、矩形位置和矩形大小这三个因素的函数。故类别、大小和位置的变化,使得很小的检测窗口含有非常多的矩形特征。

得到图像的特征后,训练一个决策树构建的adaboost级联决策器来识别是否为人脸。

二、实现

OpenCV中自带已训练好的检测器,包括面部,眼睛,猫脸等,都保存在XML文件中,我们可以通过以下程序找到他们:

import cv2 as cv
print(cv.__file__)

找到的文件如下所示:

那我们就利用这些文件来识别人脸,眼睛等。检测流程如下:

  1. 读取图片,并转换成灰度图
  2. 实例化人脸和眼睛检测的分类器对象
  3. # 实例化级联分类器 classifier =cv.CascadeClassifier( "haarcascade_frontalface_default.xml" ) # 加载分类器 classifier.load('haarcascade_frontalface_default.xml')
  4. 进行人脸和眼睛的检测
  5. rect = classifier.detectMultiScale(gray, scaleFactor, minNeighbors, minSize,maxsize)
  6. 参数:
  7. Gray: 要进行检测的人脸图像
  8. scaleFactor: 前后两次扫描中,搜索窗口的比例系数
  9. minneighbors:目标至少被检测到minNeighbors次才会被认为是目标
  10. minsize和maxsize: 目标的最小尺寸和最大尺寸
  11. 将检测结果绘制出来就可以了。

主程序如下所示:

import cv2 as cv
import matplotlib.pyplot as plt
# 1.以灰度图的形式读取图片
img = cv.imread("16.jpg")
gray = cv.cvtColor(img,cv.COLOR_BGR2GRAY)

# 2.实例化OpenCV人脸和眼睛识别的分类器 
face_cas = cv.CascadeClassifier( "haarcascade_frontalface_default.xml" ) 
face_cas.load('haarcascade_frontalface_default.xml')

eyes_cas = cv.CascadeClassifier("haarcascade_eye.xml")
eyes_cas.load("haarcascade_eye.xml")

# 3.调用识别人脸 
faceRects = face_cas.detectMultiScale( gray, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32)) 
for faceRect in faceRects: 
    x, y, w, h = faceRect 
    # 框出人脸 
    cv.rectangle(img, (x, y), (x + h, y + w),(0,255,0), 3) 
    # 4.在识别出的人脸中进行眼睛的检测
    roi_color = img[y:y+h, x:x+w]
    roi_gray = gray[y:y+h, x:x+w]
    eyes = eyes_cas.detectMultiScale(roi_gray) 
    for (ex,ey,ew,eh) in eyes:
        cv.rectangle(roi_color,(ex,ey),(ex+ew,ey+eh),(0,255,0),2)
# 5. 检测结果的绘制
plt.figure(figsize=(8,6),dpi=100)
plt.imshow(img[:,:,::-1]),plt.title('检测结果')
plt.xticks([]), plt.yticks([])
plt.show()

结果:

我们也可在视频中对人脸进行检测:

import cv2 as cv
import matplotlib.pyplot as plt
# 1.读取视频
cap = cv.VideoCapture("movie.mp4")
# 2.在每一帧数据中进行人脸识别
while(cap.isOpened()):
    ret, frame = cap.read()
    if ret==True:
        gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
        # 3.实例化OpenCV人脸识别的分类器 
        face_cas = cv.CascadeClassifier( "haarcascade_frontalface_default.xml" ) 
        face_cas.load('haarcascade_frontalface_default.xml')
        # 4.调用识别人脸 
        faceRects = face_cas.detectMultiScale(gray, scaleFactor=1.2, minNeighbors=3, minSize=(32, 32)) 
        for faceRect in faceRects: 
            x, y, w, h = faceRect 
            # 框出人脸 
            cv.rectangle(frame, (x, y), (x + h, y + w),(0,255,0), 3) 
        cv.imshow("frame",frame)
        if cv.waitKey(1) & 0xFF == ord('q'):
            break
# 5. 释放资源
cap.release()  
cv.destroyAllWindows()

三、总结

opencv中人脸识别的流程是:

  1. 读取图片,并转换成灰度图
  2. 实例化人脸和眼睛检测的分类器对象
# 实例化级联分类器
classifier =cv.CascadeClassifier( "haarcascade_frontalface_default.xml" ) 
# 加载分类器
classifier.load('haarcascade_frontalface_default.xml')
  1. 进行人脸和眼睛的检测
rect = classifier.detectMultiScale(gray, scaleFactor, minNeighbors, minSize,maxsize)
  1. 将检测结果绘制出来就可以了。

我们也可以在视频中进行人脸识别

相关推荐

当Frida来“敲”门(frida是什么)

0x1渗透测试瓶颈目前,碰到越来越多的大客户都会将核心资产业务集中在统一的APP上,或者对自己比较重要的APP,如自己的主业务,办公APP进行加壳,流量加密,投入了很多精力在移动端的防护上。而现在挖...

服务端性能测试实战3-性能测试脚本开发

前言在前面的两篇文章中,我们分别介绍了性能测试的理论知识以及性能测试计划制定,本篇文章将重点介绍性能测试脚本开发。脚本开发将分为两个阶段:阶段一:了解各个接口的入参、出参,使用Python代码模拟前端...

Springboot整合Apache Ftpserver拓展功能及业务讲解(三)

今日分享每天分享技术实战干货,技术在于积累和收藏,希望可以帮助到您,同时也希望获得您的支持和关注。架构开源地址:https://gitee.com/msxyspringboot整合Ftpserver参...

Linux和Windows下:Python Crypto模块安装方式区别

一、Linux环境下:fromCrypto.SignatureimportPKCS1_v1_5如果导包报错:ImportError:Nomodulenamed'Crypt...

Python 3 加密简介(python des加密解密)

Python3的标准库中是没多少用来解决加密的,不过却有用于处理哈希的库。在这里我们会对其进行一个简单的介绍,但重点会放在两个第三方的软件包:PyCrypto和cryptography上,我...

怎样从零开始编译一个魔兽世界开源服务端Windows

第二章:编译和安装我是艾西,上期我们讲述到编译一个魔兽世界开源服务端环境准备,那么今天跟大家聊聊怎么编译和安装我们直接进入正题(上一章没有看到的小伙伴可以点我主页查看)编译服务端:在D盘新建一个文件夹...

附1-Conda部署安装及基本使用(conda安装教程)

Windows环境安装安装介质下载下载地址:https://www.anaconda.com/products/individual安装Anaconda安装时,选择自定义安装,选择自定义安装路径:配置...

如何配置全世界最小的 MySQL 服务器

配置全世界最小的MySQL服务器——如何在一块IntelEdison为控制板上安装一个MySQL服务器。介绍在我最近的一篇博文中,物联网,消息以及MySQL,我展示了如果Partic...

如何使用Github Action来自动化编译PolarDB-PG数据库

随着PolarDB在国产数据库领域荣膺桂冠并持续获得广泛认可,越来越多的学生和技术爱好者开始关注并涉足这款由阿里巴巴集团倾力打造且性能卓越的关系型云原生数据库。有很多同学想要上手尝试,却卡在了编译数据...

面向NDK开发者的Android 7.0变更(ndk android.mk)

订阅Google官方微信公众号:谷歌开发者。与谷歌一起创造未来!受Android平台其他改进的影响,为了方便加载本机代码,AndroidM和N中的动态链接器对编写整洁且跨平台兼容的本机...

信创改造--人大金仓(Kingbase)数据库安装、备份恢复的问题纪要

问题一:在安装KingbaseES时,安装用户对于安装路径需有“读”、“写”、“执行”的权限。在Linux系统中,需要以非root用户执行安装程序,且该用户要有标准的home目录,您可...

OpenSSH 安全漏洞,修补操作一手掌握

1.漏洞概述近日,国家信息安全漏洞库(CNNVD)收到关于OpenSSH安全漏洞(CNNVD-202407-017、CVE-2024-6387)情况的报送。攻击者可以利用该漏洞在无需认证的情况下,通...

Linux:lsof命令详解(linux lsof命令详解)

介绍欢迎来到这篇博客。在这篇博客中,我们将学习Unix/Linux系统上的lsof命令行工具。命令行工具是您使用CLI(命令行界面)而不是GUI(图形用户界面)运行的程序或工具。lsoflsof代表&...

幻隐说固态第一期:固态硬盘接口类别

前排声明所有信息来源于网络收集,如有错误请评论区指出更正。废话不多说,目前固态硬盘接口按速度由慢到快分有这几类:SATA、mSATA、SATAExpress、PCI-E、m.2、u.2。下面我们来...

新品轰炸 影驰SSD多款产品登Computex

分享泡泡网SSD固态硬盘频道6月6日台北电脑展作为全球第二、亚洲最大的3C/IT产业链专业展,吸引了众多IT厂商和全球各地媒体的热烈关注,全球存储新势力—影驰,也积极参与其中,为广大玩家朋友带来了...