百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

PCL采样

bigegpt 2024-08-05 11:41 2 浏览

(1)下采样 Downsampling

一般下采样是通过构造一个三维体素栅格,然后在每个体素内用体素内的所有点的重心近似显示体素中的其他点,这样体素内所有点就用一个重心点来表示,进行下采样的来达到滤波的效果,这样就大大的减少了数据量,特别是在配准,曲面重建等工作之前作为预处理,可以很好的提高程序的运行速度,

#include <pcl/io/pcd_io.h>
#include <pcl/filters/voxel_grid.h>

int
main(int argc, char** argv)
{
    // 创建点云对象
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
    pcl::PointCloud<pcl::PointXYZ>::Ptr filteredCloud(new pcl::PointCloud<pcl::PointXYZ>);

    // 读取PCD文件
    if (pcl::io::loadPCDFile<pcl::PointXYZ>(argv[1], *cloud) != 0)
    {
        return -1;
    }

    // 创建滤波对象
    pcl::VoxelGrid<pcl::PointXYZ> filter;
    filter.setInputCloud(cloud);
    // 设置体素栅格的大小为 1x1x1cm
    filter.setLeafSize(0.01f, 0.01f, 0.01f);
    filter.filter(*filteredCloud);
}

实验结果(略)

(2)

均匀采样:这个类基本上是相同的,但它输出的点云索引是选择的关键点在计算描述子的常见方式。

#include <pcl/io/pcd_io.h>
#include <pcl/keypoints/uniform_sampling.h>

int
main(int argc, char** argv)
{
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
    pcl::PointCloud<pcl::PointXYZ>::Ptr filteredCloud(new pcl::PointCloud<pcl::PointXYZ>);
    if (pcl::io::loadPCDFile<pcl::PointXYZ>(argv[1], *cloud) != 0)
    {
        return -1;
    }
    // Uniform sampling object.
    pcl::UniformSampling<pcl::PointXYZ> filter;
    filter.setInputCloud(cloud);
    filter.setRadiusSearch(0.01f);
    // We need an additional object to store the indices of surviving points.
    pcl::PointCloud<int> keypointIndices;

    filter.compute(keypointIndices);
    pcl::copyPointCloud(*cloud, keypointIndices.points, *filteredCloud);
}

(3)增采样 :增采样是一种表面重建方法,当你有比你想象的要少的点云数据时,增采样可以帮你恢复原有的表面(S),通过内插你目前拥有的点云数据,这是一个复杂的猜想假设的过程。所以构建的结果不会百分之一百准确,但有时它是一种可选择的方案。所以,在你的点云云进行下采样时,一定要保存一份原始数据!

#include <pcl/io/pcd_io.h>
#include <pcl/surface/mls.h>

int main(int argc,char** argv)
{
// 新建点云存储对象
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ>::Ptr filteredCloud(new pcl::PointCloud<pcl::PointXYZ>);

    // 读取文件
    if (pcl::io::loadPCDFile<pcl::PointXYZ>(argv[1], *cloud) != 0)
    {
        return -1;
    }
    // 滤波对象
    pcl::MovingLeastSquares<pcl::PointXYZ, pcl::PointXYZ> filter;
    filter.setInputCloud(cloud);
    //建立搜索对象
    pcl::search::KdTree<pcl::PointXYZ>::Ptr kdtree;
    filter.setSearchMethod(kdtree);
    //设置搜索邻域的半径为3cm
    filter.setSearchRadius(0.03);
    // Upsampling 采样的方法有 DISTINCT_CLOUD, RANDOM_UNIFORM_DENSITY
    filter.setUpsamplingMethod(pcl::MovingLeastSquares<pcl::PointXYZ, pcl::PointXYZ>::SAMPLE_LOCAL_PLANE);
    // 采样的半径是
    filter.setUpsamplingRadius(0.03);
    // 采样步数的大小
    filter.setUpsamplingStepSize(0.02);

    filter.process(*filteredCloud);
}



实验的结果

原始图像可视化:

(4)表面重建

深度传感器的测量是不准确的,和由此产生的点云也是存在的测量误差,比如离群点,孔等表面,可以用一个算法重建表面,遍历所有的点云和插值数据,试图重建原来的表面。比如增采样,PCL使用MLS算法和类。执行这一步是很重要的,因为由此产生的点云的法线将更准确。

#include <pcl/io/pcd_io.h>
#include <pcl/surface/mls.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <pcl/visualization/cloud_viewer.h>
#include <boost/thread/thread.hpp>
int
main(int argc, char** argv)
{
    
    pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);    
    pcl::PointCloud<pcl::PointNormal>::Ptr smoothedCloud(new pcl::PointCloud<pcl::PointNormal>);

    if (pcl::io::loadPCDFile<pcl::PointXYZ>(argv[1], *cloud) != 0)
    {
        return -1;
    }

    // Smoothing object (we choose what point types we want as input and output).
    pcl::MovingLeastSquares<pcl::PointXYZ, pcl::PointNormal> filter;
    filter.setInputCloud(cloud);
    // Use all neighbors in a radius of 3cm.
    filter.setSearchRadius(0.03);
    // If true, the surface and normal are approximated using a polynomial estimation
    // (if false, only a tangent one).
    filter.setPolynomialFit(true);
    // We can tell the algorithm to also compute smoothed normals (optional).
    filter.setComputeNormals(true);
    // kd-tree object for performing searches.
    pcl::search::KdTree<pcl::PointXYZ>::Ptr kdtree;
    filter.setSearchMethod(kdtree);

    filter.process(*smoothedCloud);


  boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer(new pcl::visualization::PCLVisualizer("smooth"));
viewer->addPointCloud<pcl::PointNormal>(smoothedCloud,"smoothed");

while(!viewer->wasStopped())
  {
 viewer->spinOnce(100);
boost::this_thread::sleep(boost::posix_time::microseconds(1000000));
 }
}

运行即可查看结果

原始图像(加了颜色)

增采样平滑后(没有颜色信息)


1、MLS基础

mls算法本质上和最小二乘一样,是一种拟合数据的算法。区别在于mls是局部的,即通过系数向量和基函数分别对数据中不同位置的节点区域进行拟合,需要计算出全部节点域的拟合函数的参数。而传统的最小二乘是全局的,采用所有的数据进行最小化平方和,不能过滤掉噪声点。

对于二维数据点,其拟合公式如下:


其中:

w为权函数,一般采用三次样条曲线,如果权函数为常量,则为一般的加权最小二乘算法。

n表示为包含在权函数w支持域中的节点数。

p(x)表示基函数,对于不同的数据维度和需要拟合的目标可以选择不同阶数的基函数。

a(x)表示系数向量,我们最后就需要计算出a向量的值。

u表示在x处的取值。

J表示在节点x位置的模型函数。

计算流程可以分为三步:

1,对J函数求导,得到一个线性方程组。

2,对线性方程组计算,求得a向量的值。

3,重建节点x附近的拟合函数,计算出拟合函数。


具体原理部分设计的数学计算太多,参看链接。

原理部分参考:

移动最小二乘法MLS(Moving Lest Squares)简要介绍

无网格法与Matlab程序设计(7)——移动最小二乘(MLS)形函数

对于三维数据点,计算步骤相似:

1,计算局部K邻域范围内的的超平面,超平面的法向量即为该处的的法线。

2,进行最小二乘拟合,最终得到拟合面的点坐标。




2、法线计算

PCL中可以先进行曲面重建,再根据曲面计算法线。


pcl::search::KdTree<pcl::PointXYZ>::Ptr kd_tree(new pcl::search::KdTree<pcl::PointXYZ>);

//法线

pcl::PointCloud<pcl::PointNormal>::Ptr normal(new pcl::PointCloud<pcl::PointNormal>);

//实例化移动最小二乘类

pcl::MovingLeastSquares<pcl::PointXYZ, pcl::PointNormal> mls;

mls.setInputCloud(cloud);

mls.setComputeNormals(true);

mls.setPolynomialFit(true);

mls.setPolynomialOrder(2); //设置多项式阶数

mls.setSearchMethod(kd_tree);

mls.setSearchRadius(0.05); //设置kdtree搜索半径

mls.setNumberOfThreads(4);

mls.process(*normal); //使用mls方法计算法线并进行曲面重建



3、上采样

PCL中上采样方法是通过计算邻域内拟合MLS局部曲面,然后根据曲面计算法线和点云间的插值坐标,最后将插值坐标映射到输入点云内。

算法原理部分非常复杂。。想研究的直接去看论文。

PCL提供了三种采样方式。

SAMPLE_LOCAL_PLANE:每个输入点的局部平面将使用 upsampling_radius_ (半径)和 upsampling_step_ (移动步长)参数以圆形方式采样。


pcl::search::KdTree<pcl::PointXYZ>::Ptr tree;

UpSample.setSearchMethod(tree);

UpSample.setSearchRadius(0.1);

//移动最小二乘

UpSample.setUpsamplingMethod(pcl::MovingLeastSquares<pcl::PointXYZ, pcl::PointXYZ>::SAMPLE_LOCAL_PLANE);

UpSample.setUpsamplingRadius(0.04);

UpSample.setUpsamplingStepSize(0.02);

UpSample.process(*CloudUp);



本文转自:https://blog.csdn.net/shixin_0125/article/details/105153554?utm_medium=distribute.pc_relevant.none-task-blog-2~default~baidujs_baidulandingword~default-0-105153554-blog-124042946.topnsimilarv1&spm=1001.2101.3001.4242.1&utm_relevant_index=3

相关推荐

程序员请收好:10个非常有用的 Visual Studio Code 插件

一个插件列表,可以让你的程序员生活变得轻松许多。作者|Daan译者|Elle出品|CSDN(ID:CSDNnews)以下为译文:无论你是经验丰富的开发人员还是刚刚开始第一份工作的初级开发人...

PADS在WIN10系统中菜单显示不全的解决方法

决定由AD转PADS,打开发现菜单显示不正常,如下图所示:这个是由于系统的默认字体不合适导致,修改一下系统默认字体即可,修改方法如下:打开开始菜单-->所有程序-->Windows系统--...

一文讲解Web前端开发基础环境配置

先从基本的HTML语言开始学习。一个网页的所有内容都是基于HTML,为了学好HTML,不使用任何集成工具,而用一个文本编辑器,直接从最简单的HTML开始编写HTML。先在网上下载notepad++文...

TCP/IP协议栈在Linux内核中的运行时序分析

本文主要是讲解TCP/IP协议栈在Linux内核中的运行时序,文章较长,里面有配套的视频讲解,建议收藏观看。1Linux概述  1.1Linux操作系统架构简介Linux操作系统总体上由Linux...

从 Angular Route 中提前获取数据

#头条创作挑战赛#介绍提前获取意味着在数据呈现在屏幕之前获取到数据。本文中,你将学到,在路由更改前怎么获取到数据。通过本文,你将学会使用resolver,在AngularApp中应用re...

边做游戏边划水: 基于浅水方程的水面交互、河道交互模拟方法

以下文章来源于腾讯游戏学堂,作者Byreave篇一:基于浅水方程的水面交互本文主要介绍一种基于浅水方程的水体交互算法,在基本保持水体交互效果的前提下,实现了一种极简的水面模拟和物体交互方法。真实感的...

Nacos介绍及使用

一、Nacos介绍Nacos是SpringCloudAlibaba架构中最重要的组件。Nacos是一个更易于帮助构建云原生应用的动态服务发现、配置和服务管理平台,提供注册中心、配置中心和动态DNS...

Spring 中@Autowired,@Resource,@Inject 注解实现原理

使用案例前置条件:现在有一个Vehicle接口,它有两个实现类Bus和Car,现在还有一个类VehicleService需要注入一个Vehicle类型的Bean:publicinte...

一文带你搞懂Vue3 底层源码

作者:妹红大大转发链接:https://mp.weixin.qq.com/s/D_PRIMAD6i225Pn-a_lzPA前言vue3出来有一段时间了。今天正式开始记录一下梗vue3.0.0-be...

一线开发大牛带你深度解析探讨模板解释器,解释器的生成

解释器生成解释器的机器代码片段都是在TemplateInterpreterGenerator::generate_all()中生成的,下面将分小节详细展示该函数的具体细节,以及解释器某个组件的机器代码...

Nacos源码—9.Nacos升级gRPC分析五

大纲10.gRPC客户端初始化分析11.gRPC客户端的心跳机制(健康检查)12.gRPC服务端如何处理客户端的建立连接请求13.gRPC服务端如何映射各种请求与对应的Handler处理类14.gRP...

聊聊Spring AI的Tool Calling

序本文主要研究一下SpringAI的ToolCallingToolCallbackorg/springframework/ai/tool/ToolCallback.javapublicinter...

「云原生」Containerd ctr,crictl 和 nerdctl 命令介绍与实战操作

一、概述作为接替Docker运行时的Containerd在早在Kubernetes1.7时就能直接与Kubelet集成使用,只是大部分时候我们因熟悉Docker,在部署集群时采用了默认的dockers...

在MySQL登录时出现Access denied for user ~~ (using password: YES)

Windows~~~在MySQL登录时出现Accessdeniedforuser‘root‘@‘localhost‘(usingpassword:YES),并修改MySQL密码目录适用...

mysql 8.0多实例批量部署script

背景最近一个项目上,客户需要把阿里云的rdsformysql数据库同步至线下,用作数据的灾备,需要在线下的服务器上部署mysql8.0多实例,为了加快部署的速度,写了一个脚本。解决方案#!/bi...