Python编程 - 基于OpenCV实现人脸识别(实践篇)爬虫+人脸识别
bigegpt 2024-10-12 06:57 9 浏览
一.案例概述
本案例需要一定的Python编程基础并掌握OpenCV基本使用。
时间仓促:初略编写文档
效果如下:
开发环境:
操作系统:Windows 10
开发工具:PyCharm 2019.2版本
python版本:3.6.7
计算机视频库包:opencv_contrib_python-4.1.0.25-cp36-cp36m-win_amd64.whl
算法支持包:numpy(安装opencv默认安装numpy)
下载地址:
Python3.6.7:
Download Python?www.python.org
Pycharm工具:
Download PyCharm: Python IDE for Professional Developers by JetBrains?www.jetbrains.com
第三方包下载:
opencv-contrib-python?pypi.org
二.编写案例准备资源:
准备工作:
1.开发环境、开发工具及第三方包准备完善并创建空项目。
2.准备一些个人的图片(或者通过代码保存个人面部存入本地)要求:图片名称有一定规律
3.爬虫文件 - 爬取明星照片并存储本地
4.将明星图片和个人图片通过opencv处理保存面部图片
5.开始编写人脸识别的代码
三.代码编写顺序
一.爬虫代码直接下载运行:点击下载链接: https://pan.baidu.com/s/1BNzSQ2Xk9GkYslhwKXLYSQ 提取码: qmy1二.安装python爬虫需要的第三方包:
- requests(用户网络访问)
- beautifulsoup4(用户数据结构解析)
- pypinyin(用于中文转换为拼音)
三.运行python爬虫代码:
四.将图片转换为面部图片进行存储:
# 获取小头像信息
import cv2
import os
# 图片张数变量
def read_image():
dirs = os.listdir("d_img")
for j,dir in enumerate(dirs):
print(dir)
# 判断是否有存储头像的路径
file_path = "x_face/%s"%str(dir);
if not os.path.exists(file_path):
os.makedirs(file_path);
pass
num = 0;
for i in range(0,20):
image = cv2.imread('d_img/%s/%d.jpg'%(dir,i))
gray = cv2.cvtColor(image,code = cv2.COLOR_BGR2GRAY);
# 数据参数
face_detector = cv2.CascadeClassifier("haarcascade_frontalface_alt.xml");
# [3]进行数据对比:minNeighbors = 每一个目标至少要被检测 -整数
face_01 = face_detector.detectMultiScale(gray, minNeighbors=4);
# 绘制矩形人脸检测
print("第%d张图片===:"%i,face_01)
print(type(face_01))
if isinstance(face_01,tuple):
print("没有检查的头像")
pass
else:
print("****有检查的头像****")
for x, y, w, h in face_01:
# time.sleep(10)
x_face = gray[y:y + h, x:x + w];
x_face = cv2.resize(x_face,dsize=(200,200));
bo_photo = cv2.imwrite("%s\%d.jpg" % (file_path, num), x_face);
print("保存成功:%d" % num)
pass
num+=1;
pass
pass
pass
if __name__ == '__main__':
read_image();
pass
运行结果 - 生产以下文件:
五.人脸识别 - 主代码:
# 人脸识别 - 主代码
import cv2
import os
import time
import numpy as np;
# 图片张数变量
def Get_x_faces():
dirs = os.listdir("x_face")
print(dirs)
X = []#
Y = []#
for j,dir in enumerate(dirs):
for i in range(0,9):
image = cv2.imread('x_face/%s/%d.jpg'%(dir,i))
gray = cv2.cvtColor(image,code = cv2.COLOR_BGR2GRAY);
print("读取",gray.shape)
# NoneType ndarray
if len(str(image))!=0:
print("加入。。。。")
X.append(gray)
Y.append(j)
pass
return [X,Y,dirs]
pass
if __name__ == '__main__':
X,Y,dirs = Get_x_faces();
print("X=",X)
print("Y=",Y)
print("dirs=",dirs)
#asarray都可以将结构数据转化为ndarray
X = np.asarray(X);
Y = np.asarray(Y);
# 产生一个随机数 -
index = [i for i in range(0,len(X))];
print(index)
#现场修改序列,改变自身内容。(类似洗牌,打乱顺序)
np.random.shuffle(index);
print("***********",index)
# 打乱顺序 :相同规则打乱
X = X[index]
Y = Y[index]
print("88888888",Y)
# 训练数据
print("训练数据为:",len(X),len(Y))
X_train = X[:len(X)]
Y_train = Y[:len(Y)];
print("800000",Y_train)
# 算法Eigen 特征的意思
# 主成分分析(PCA)——Eigenfaces(特征脸)——函数:cv2.face.EigenFaceRecognizer_create
model = cv2.face.EigenFaceRecognizer_create();
print(model)
# 算法学习
print("算法学习", len(X_train), len(Y_train));
model.train(X, Y);
print("已经学会了数据。。。。")
# 测试数据
# X_test, Y_test = X[-5:], Y[-5:];
# 开始验证
# for data in X_test:
# # print(data)
# result = model.predict(data);
# print("=================")
# print(result)
# print(dirs[result[0]])
# pass
Video_face = cv2.VideoCapture(0);
face_detector = cv2.CascadeClassifier("haarcascade_frontalface_alt.xml")
# while循环调取视频图形
while True:
flag,frame = Video_face.read();
gray = cv2.cvtColor(frame,code=cv2.COLOR_BGR2GRAY);
faces = face_detector.detectMultiScale(gray,1.3,5);
if isinstance(faces, tuple):
print("没有检查的头像")
pass
else:
print("有头像了。。。。")
# for循环遍历数据
for x, y, w, h in faces:
cv2.rectangle(frame, pt1=(x, y), pt2=(x + w, y + h), color=[0, 0, 255], thickness=2);
face = gray[y:y + h, x:x+w];
print("===]]]", face.shape)
face_1 = cv2.resize(face, dsize=(200, 200));
print("=================")
print(face_1.shape)
# 开始对比
print("~~~~"*20)
print(" 参数为:",face_1.shape);
result = model.predict(face_1);
print("对比返回结果:", result)
print('该人脸是:', dirs[result[0]])
a1 = dirs[result[0]]
if result[1]<1600:
a1 = "NO"
pass
cv2.putText(frame, a1, (x, y), cv2.FONT_ITALIC, 1, [0, 0, 255], 2);
pass
pass
cv2.imshow('face', frame)
cv2.waitKey(100)
pass
video.release()
cv2.destroyAllWindows();
pass
大功告成
相关推荐
- 当Frida来“敲”门(frida是什么)
-
0x1渗透测试瓶颈目前,碰到越来越多的大客户都会将核心资产业务集中在统一的APP上,或者对自己比较重要的APP,如自己的主业务,办公APP进行加壳,流量加密,投入了很多精力在移动端的防护上。而现在挖...
- 服务端性能测试实战3-性能测试脚本开发
-
前言在前面的两篇文章中,我们分别介绍了性能测试的理论知识以及性能测试计划制定,本篇文章将重点介绍性能测试脚本开发。脚本开发将分为两个阶段:阶段一:了解各个接口的入参、出参,使用Python代码模拟前端...
- Springboot整合Apache Ftpserver拓展功能及业务讲解(三)
-
今日分享每天分享技术实战干货,技术在于积累和收藏,希望可以帮助到您,同时也希望获得您的支持和关注。架构开源地址:https://gitee.com/msxyspringboot整合Ftpserver参...
- Linux和Windows下:Python Crypto模块安装方式区别
-
一、Linux环境下:fromCrypto.SignatureimportPKCS1_v1_5如果导包报错:ImportError:Nomodulenamed'Crypt...
- Python 3 加密简介(python des加密解密)
-
Python3的标准库中是没多少用来解决加密的,不过却有用于处理哈希的库。在这里我们会对其进行一个简单的介绍,但重点会放在两个第三方的软件包:PyCrypto和cryptography上,我...
- 怎样从零开始编译一个魔兽世界开源服务端Windows
-
第二章:编译和安装我是艾西,上期我们讲述到编译一个魔兽世界开源服务端环境准备,那么今天跟大家聊聊怎么编译和安装我们直接进入正题(上一章没有看到的小伙伴可以点我主页查看)编译服务端:在D盘新建一个文件夹...
- 附1-Conda部署安装及基本使用(conda安装教程)
-
Windows环境安装安装介质下载下载地址:https://www.anaconda.com/products/individual安装Anaconda安装时,选择自定义安装,选择自定义安装路径:配置...
- 如何配置全世界最小的 MySQL 服务器
-
配置全世界最小的MySQL服务器——如何在一块IntelEdison为控制板上安装一个MySQL服务器。介绍在我最近的一篇博文中,物联网,消息以及MySQL,我展示了如果Partic...
- 如何使用Github Action来自动化编译PolarDB-PG数据库
-
随着PolarDB在国产数据库领域荣膺桂冠并持续获得广泛认可,越来越多的学生和技术爱好者开始关注并涉足这款由阿里巴巴集团倾力打造且性能卓越的关系型云原生数据库。有很多同学想要上手尝试,却卡在了编译数据...
- 面向NDK开发者的Android 7.0变更(ndk android.mk)
-
订阅Google官方微信公众号:谷歌开发者。与谷歌一起创造未来!受Android平台其他改进的影响,为了方便加载本机代码,AndroidM和N中的动态链接器对编写整洁且跨平台兼容的本机...
- 信创改造--人大金仓(Kingbase)数据库安装、备份恢复的问题纪要
-
问题一:在安装KingbaseES时,安装用户对于安装路径需有“读”、“写”、“执行”的权限。在Linux系统中,需要以非root用户执行安装程序,且该用户要有标准的home目录,您可...
- OpenSSH 安全漏洞,修补操作一手掌握
-
1.漏洞概述近日,国家信息安全漏洞库(CNNVD)收到关于OpenSSH安全漏洞(CNNVD-202407-017、CVE-2024-6387)情况的报送。攻击者可以利用该漏洞在无需认证的情况下,通...
- Linux:lsof命令详解(linux lsof命令详解)
-
介绍欢迎来到这篇博客。在这篇博客中,我们将学习Unix/Linux系统上的lsof命令行工具。命令行工具是您使用CLI(命令行界面)而不是GUI(图形用户界面)运行的程序或工具。lsoflsof代表&...
- 幻隐说固态第一期:固态硬盘接口类别
-
前排声明所有信息来源于网络收集,如有错误请评论区指出更正。废话不多说,目前固态硬盘接口按速度由慢到快分有这几类:SATA、mSATA、SATAExpress、PCI-E、m.2、u.2。下面我们来...
- 新品轰炸 影驰SSD多款产品登Computex
-
分享泡泡网SSD固态硬盘频道6月6日台北电脑展作为全球第二、亚洲最大的3C/IT产业链专业展,吸引了众多IT厂商和全球各地媒体的热烈关注,全球存储新势力—影驰,也积极参与其中,为广大玩家朋友带来了...
- 一周热门
- 最近发表
-
- 当Frida来“敲”门(frida是什么)
- 服务端性能测试实战3-性能测试脚本开发
- Springboot整合Apache Ftpserver拓展功能及业务讲解(三)
- Linux和Windows下:Python Crypto模块安装方式区别
- Python 3 加密简介(python des加密解密)
- 怎样从零开始编译一个魔兽世界开源服务端Windows
- 附1-Conda部署安装及基本使用(conda安装教程)
- 如何配置全世界最小的 MySQL 服务器
- 如何使用Github Action来自动化编译PolarDB-PG数据库
- 面向NDK开发者的Android 7.0变更(ndk android.mk)
- 标签列表
-
- mybatiscollection (79)
- mqtt服务器 (88)
- keyerror (78)
- c#map (65)
- resize函数 (64)
- xftp6 (83)
- bt搜索 (75)
- c#var (76)
- mybatis大于等于 (64)
- xcode-select (66)
- mysql授权 (74)
- 下载测试 (70)
- linuxlink (65)
- pythonwget (67)
- androidinclude (65)
- libcrypto.so (74)
- logstashinput (65)
- hadoop端口 (65)
- vue阻止冒泡 (67)
- jquery跨域 (68)
- php写入文件 (73)
- kafkatools (66)
- mysql导出数据库 (66)
- jquery鼠标移入移出 (71)
- 取小数点后两位的函数 (73)