百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

R语言学习 - 箱线图(小提琴图、抖动图、区域散点图)

bigegpt 2024-08-05 11:51 8 浏览

箱线图

箱线图是能同时反映数据统计量和整体分布,又很漂亮的展示图。在2014年的Nature Method上有2篇Correspondence论述了使用箱线图的好处和一个在线绘制箱线图的工具。就这样都可以发两篇Nature method,没天理,但也说明了箱线图的重要意义。

下面这张图展示了Bar plot、Box plot、Volin plot和Bean plot对数据分布的反应。从Bar plot上只能看到数据标准差或标准误不同;Box plot可以看到数据分布的集中性不同;Violin plot和Bean plot展示的是数据真正的分布,尤其是对Biomodal数据的展示。

Boxplot从下到上展示的是最小值,第一四分位数 (箱子的下边线)、中位数 (箱子中间的线)、第三四分位数 (箱子上边线)、最大值,具体解读参见刘永鑫的扩增子图表解读1箱线图:Alpha多样性,老板再也不操心的我文献阅读了

http://www.nature.com/nmeth/journal/v11/n2/full/nmeth.2811.html

一步步解析箱线图绘制

假设有这么一个基因表达矩阵,第一列为基因名字,后面几列为样品名字,想绘制下样品中基因表达的整体分布。

profile="Name;2cell_1;2cell_2;2cell_3;4cell_1;4cell_2;4cell_3;zygote_1;zygote_2;zygote_3
A;4;6;7;3.2;5.2;5.6;2;4;3
B;6;8;9;5.2;7.2;7.6;4;6;5
C;8;10;11;7.2;9.2;9.6;6;8;7
D;10;12;13;9.2;11.2;11.6;8;10;9
E;12;14;15;11.2;13.2;13.6;10;12;11
F;14;16;17;13.2;15.2;15.6;12;14;13
G;15;17;18;14.2;16.2;16.6;13;15;14
H;16;18;19;15.2;17.2;17.6;14;16;15
I;17;19;20;16.2;18.2;18.6;15;17;16
J;18;20;21;17.2;19.2;19.6;16;18;17
L;19;21;22;18.2;20.2;20.6;17;19;18
M;20;22;23;19.2;21.2;21.6;18;20;19
N;21;23;24;20.2;22.2;22.6;19;21;20
O;22;24;25;21.2;23.2;23.6;20;22;21"

读入数据并转换为ggplot2需要的长数据表格式 (经过前面几篇的练习,这应该都很熟了)

profile_text <- read.table(text=profile, header=T, row.names=1, quote="",sep=";", check.names=F)
# 在melt时保留位置信息
# melt格式是ggplot2画图最喜欢的格式
# 好好体会下这个格式,虽然多占用了不少空间,但是确实很方便
library(ggplot2)
library(reshape2)
data_m <- melt(profile_text)
head(data_m)
  variable value
1  2cell_1     4
2  2cell_1     6
3  2cell_1     8
4  2cell_1    10
5  2cell_1    12
6  2cell_1    14

像往常一样,就可以直接画图了。

# variable和value为矩阵melt后的两列的名字,内部变量, variable代表了点线的属性,value代表对应的值。
p <- ggplot(data_m, aes(x=variable, y=value),color=variable) + 
geom_boxplot() + 
theme(axis.text.x=element_text(angle=50,hjust=0.5, vjust=0.5)) +
theme(legend.position="none")
p
# 图会存储在当前目录的Rplots.pdf文件中,如果用Rstudio,可以不运行dev.off()
dev.off()

箱线图出来了,看上去还可以,再加点色彩。

# variable和value为矩阵melt后的两列的名字,内部变量, variable代表了点线的属性,value代表对应的值。
p <- ggplot(data_m, aes(x=variable, y=value),color=variable) + 
geom_boxplot(aes(fill=factor(variable))) + 
theme(axis.text.x=element_text(angle=50,hjust=0.5, vjust=0.5)) +
theme(legend.position="none")
p
# 图会存储在当前目录的Rplots.pdf文件中,如果用Rstudio,可以不运行dev.off()
dev.off()

再看看Violin plot

# variable和value为矩阵melt后的两列的名字,内部变量, variable代表了点线的属性,value代表对应的值。
p <- ggplot(data_m, aes(x=variable, y=value),color=variable) + 
geom_violin(aes(fill=factor(variable))) + 
theme(axis.text.x=element_text(angle=50,hjust=0.5, vjust=0.5)) +
theme(legend.position="none")
p
# 图会存储在当前目录的Rplots.pdf文件中,如果用Rstudio,可以不运行dev.off()
dev.off()

还有Jitter plot (这里使用的是ggbeeswarm包)

library(ggbeeswarm)
# 为了更好的效果,只保留其中一个样品的数据
# grepl类似于Linux的grep命令,获取特定模式的字符串
data_m2 <- data_m[grepl("_3", data_m$variable),]
# variable和value为矩阵melt后的两列的名字,内部变量, variable代表了点线的属性,value代表对应的值。
p <- ggplot(data_m2, aes(x=variable, y=value),color=variable) + 
geom_quasirandom(aes(colour=factor(variable))) + 
theme_bw() + theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(), legend.key=element_blank()) +
theme(legend.position="none")
# 也可以用geom_jitter(aes(colour=factor(variable)))代替geom_quasirandom(aes(colour=factor(variable)))
# 但个人认为geom_quasirandom给出的结果更有特色
ggsave(p, filename="jitterplot.pdf", width=14, height=8, units=c("cm"))

绘制单个基因 (A)的箱线图

为了更好的展示效果,下面的矩阵增加了样品数量和样品的分组信息。

profile="Name;2cell_1;2cell_2;2cell_3;2cell_4;2cell_5;2cell_6;4cell_1;4cell_2;4cell_3;4cell_4;4cell_5;4cell_6;zygote_1;zygote_2;zygote_3;zygote_4;zygote_5;zygote_6
A;4;6;7;5;8;6;3.2;5.2;5.6;3.6;7.6;4.8;2;4;3;2;4;2.5
B;6;8;9;7;10;8;5.2;7.2;7.6;5.6;9.6;6.8;4;6;5;4;6;4.5"
profile_text <- read.table(text=profile, header=T, row.names=1, quote="",sep=";", check.names=F)
data_m = data.frame(t(profile_text['A',]))
data_m$sample = rownames(data_m)
# 只挑选显示部分
# grepl前面已经讲过用于匹配
data_m[grepl('_[123]', data_m$sample),]
           A   sample
2cell_1  4.0  2cell_1
2cell_2  6.0  2cell_2
2cell_3  7.0  2cell_3
4cell_1  3.2  4cell_1
4cell_2  5.2  4cell_2
4cell_3  5.6  4cell_3
zygote_1 2.0 zygote_1
zygote_2 4.0 zygote_2
zygote_3 3.0 zygote_3

获得样品分组信息 (这个例子比较特殊,样品的分组信息就是样品名字下划线前面的部分)

# 可以利用strsplit分割,取出其前面的字符串
# R中复杂的输出结果多数以列表的形式体现,在之前的矩阵操作教程中
# 提到过用str函数来查看复杂结果的结构,并从中获取信息
group = unlist(lapply(strsplit(data_m$sample,"_"), function(x) x[1]))
data_m$group = group
data_m[grepl('_[123]', data_m$sample),]
           A   sample  group
2cell_1  4.0  2cell_1  2cell
2cell_2  6.0  2cell_2  2cell
2cell_3  7.0  2cell_3  2cell
4cell_1  3.2  4cell_1  4cell
4cell_2  5.2  4cell_2  4cell
4cell_3  5.6  4cell_3  4cell
zygote_1 2.0 zygote_1 zygote
zygote_2 4.0 zygote_2 zygote
zygote_3 3.0 zygote_3 zygote

如果没有这个规律,也可以提到类似于下面的文件,指定样品所属的组的信息。

sampleGroup_text="Sample;Group
zygote_1;zygote
zygote_2;zygote
zygote_3;zygote
zygote_4;zygote
zygote_5;zygote
zygote_6;zygote
2cell_1;2cell
2cell_2;2cell
2cell_3;2cell
2cell_4;2cell
2cell_5;2cell
2cell_6;2cell
4cell_1;4cell
4cell_2;4cell
4cell_3;4cell
4cell_4;4cell
4cell_5;4cell
4cell_6;4cell"
#sampleGroup = read.table(text=sampleGroup_text,sep="\t",header=1,check.names=F,row.names=1)
#data_m <- merge(data_m, sampleGroup, by="row.names")
# 会获得相同的结果,脚本注释掉了以免重复执行引起问题。

矩阵准备好了,开始画图了 (小提琴图做例子,其它类似)

# 调整下样品出现的顺序
data_m$group <- factor(data_m$group, levels=c("zygote","2cell","4cell"))
# group和A为矩阵中两列的名字,group代表了值的属性,A代表基因A对应的表达值。
# 注意看修改了的地方
p <- ggplot(data_m, aes(x=group, y=A),color=group) + 
geom_violin(aes(fill=factor(group))) + 
theme(axis.text.x=element_text(angle=50,hjust=0.5, vjust=0.5)) +
theme(legend.position="none")
p
# 图会存储在当前目录的Rplots.pdf文件中,如果用Rstudio,可以不运行dev.off()

长矩阵绘制箱线图

常规矩阵绘制箱线图要求必须是个方正的矩阵输入,而有时想比较的几个组里面检测的值数目不同。比如有三个组,GrpA组检测了6个病人,GrpB组检测了10个病人,GrpC组是12个正常人的检测数据。这时就很难形成一个行位检测值,列为样品的矩阵,长表格模式就适合与这种情况。

long_table <- "Grp;Value
GrpA;10
GrpA;11
GrpA;12
GrpB;5
GrpB;4
GrpB;3
GrpB;2
GrpC;2
GrpC;3"
long_table <- read.table(text=long_table,sep="\t",header=1,check.names=F)
p <- ggplot(data_m, aes(x=Grp, y=Value),color=Grp) + 
geom_violin(aes(fill=factor(Grp))) + 
theme(axis.text.x=element_text(angle=50,hjust=0.5, vjust=0.5)) +
theme(legend.position="none")
p
dev.off()

长表格形式自身就是常规矩阵melt后的格式,这种用来绘制箱线图就很简单了,就不做解释了。

相关推荐

Go语言泛型-泛型约束与实践(go1.7泛型)

来源:械说在Go语言中,Go泛型-泛型约束与实践部分主要探讨如何定义和使用泛型约束(Constraints),以及如何在实际开发中利用泛型进行更灵活的编程。以下是详细内容:一、什么是泛型约束?**泛型...

golang总结(golang实战教程)

基础部分Go语言有哪些优势?1简单易学:语法简洁,减少了代码的冗余。高效并发:内置强大的goroutine和channel,使并发编程更加高效且易于管理。内存管理:拥有自动垃圾回收机制,减少内...

Go 官宣:新版 Protobuf API(go pro版本)

原文作者:JoeTsai,DamienNeil和HerbieOng原文链接:https://blog.golang.org/a-new-go-api-for-protocol-buffer...

Golang开发的一些注意事项(一)(golang入门项目)

1.channel关闭后读的问题当channel关闭之后再去读取它,虽然不会引发panic,但会直接得到零值,而且ok的值为false。packagemainimport"...

golang 托盘菜单应用及打开系统默认浏览器

之前看到一个应用,用go语言编写,说是某某程序的windows图形化客户端,体验一下发现只是一个托盘,然后托盘菜单的控制面板功能直接打开本地浏览器访问程序启动的webserver网页完成gui相关功...

golang标准库每日一库之 io/ioutil

一、核心函数概览函数作用描述替代方案(Go1.16+)ioutil.ReadFile(filename)一次性读取整个文件内容(返回[]byte)os.ReadFileioutil.WriteFi...

文件类型更改器——GoLang 中的 CLI 工具

我是如何为一项琐碎的工作任务创建一个简单的工具的,你也可以上周我开始玩GoLang,它是一种由Google制作的类C编译语言,非常轻量和快速,事实上它经常在Techempower的基准测...

Go (Golang) 中的 Channels 简介(golang channel长度和容量)

这篇文章重点介绍Channels(通道)在Go中的工作方式,以及如何在代码中使用它们。在Go中,Channels是一种编程结构,它允许我们在代码的不同部分之间移动数据,通常来自不同的goro...

Golang引入泛型:Go将Interface「」替换为“Any”

现在Go将拥有泛型:Go将Interface{}替换为“Any”,这是一个类型别名:typeany=interface{}这会引入了泛型作好准备,实际上,带有泛型的Go1.18Beta...

一文带你看懂Golang最新特性(golang2.0特性)

作者:腾讯PCG代码委员会经过十余年的迭代,Go语言逐渐成为云计算时代主流的编程语言。下到云计算基础设施,上到微服务,越来越多的流行产品使用Go语言编写。可见其影响力已经非常强大。一、Go语言发展历史...

Go 每日一库之 java 转 go 遇到 Apollo?让 agollo 来平滑迁移

以下文章来源于GoOfficialBlog,作者GoOfficialBlogIntroductionagollo是Apollo的Golang客户端Apollo(阿波罗)是携程框架部门研...

Golang使用grpc详解(golang gcc)

gRPC是Google开源的一种高性能、跨语言的远程过程调用(RPC)框架,它使用ProtocolBuffers作为序列化工具,支持多种编程语言,如C++,Java,Python,Go等。gR...

Etcd服务注册与发现封装实现--golang

服务注册register.gopackageregisterimport("fmt""time"etcd3"github.com/cor...

Golang:将日志以Json格式输出到Kafka

在上一篇文章中我实现了一个支持Debug、Info、Error等多个级别的日志库,并将日志写到了磁盘文件中,代码比较简单,适合练手。有兴趣的可以通过这个链接前往:https://github.com/...

如何从 PHP 过渡到 Golang?(php转golang)

我是PHP开发者,转Go两个月了吧,记录一下使用Golang怎么一步步开发新项目。本着有坑填坑,有错改错的宗旨,从零开始,开始学习。因为我司没有专门的Golang大牛,所以我也只能一步步自己去...