百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

单细胞测序分析之小技巧之for循环批量处理数据和出图

bigegpt 2024-08-05 11:51 2 浏览

“harmony”整合不同平台的单细胞数据之旅生物信息学习的正确姿势

NGS系列文章包括NGS基础、转录组分析 (Nature重磅综述|关于RNA-seq你想知道的全在这)、ChIP-seq分析 ChIP-seq基本分析流程、单细胞测序分析 (重磅综述:三万字长文读懂单细胞RNA测序分析的最佳实践教程 (原理、代码和评述))、DNA甲基化分析、重测序分析、GEO数据挖掘典型医学设计实验GEO数据分析 (step-by-step) - Limma差异分析、火山图、功能富集等内容。

在进行单细胞转录组测序分析中,我们发现比如样本较多或者需要大量出图的时候,我一开始就是大量手动一个一个的出图,但回头想想,这样的操作模式不都是一样的嘛,直接用for循环不就搞定啦!

基础

首先我们讲点for循环的基础知识及举个小栗子!

for循环基本结构如下:

for(变量 in 值){}

也就是说当变量在值的范围内将执行中括号内的操作。是不是非常简单?

我们举个栗子:

比如我们想要计算一个向量中偶数的个数:

x <- c(2,5,3,9,8,11,6)
count <- 0
for (val in x) {
if(val %% 2 == 0)  count = count+1
}
print(count)
[1] 3

在上面的示例中,由于向量x具有7个元素,因此循环迭代了7次。

在每次迭代中,val取x的对应元素的值。

我们使用了一个计数器来计算x中的偶数。我们可以看到x包含3个偶数。

进阶

比如我们现在有两个患者的鼻腔样本,然后我们进行单细胞测序后,cellranger后我们在filtered中分别生成了3个文件:barcodes,features和matrix。我懒呀,我想万一我有好多个样本怎么办,不如用一个for循环来搞定!

于是我的文件就成了这个样子:

batch_list=list("P2","P3")
batch_data_list=list("P2"=1,"P3"=1)
for( i in 1:length(batch_list))
{
  print(batch_list[[i]])
  s_object=Read10X(paste("~/Input_files/",batch_list[[i]],sep=""))
  s_object=CreateSeuratObject(counts =s_object, min.cells = 0, min.features = 400, project = "P23")
  s_object[["percent.mt"]] <- PercentageFeatureSet(s_object, pattern = "^MT-")
  s_object <- subset(s_object, subset = nFeature_RNA >100 & nFeature_RNA <8000 & percent.mt <10)
  s_object@meta.data[, "run"] <- batch_list[i]
  s_object=NormalizeData(s_object)
  batch_data_list[[i]]=FindVariableFeatures(s_object, selection.method = "vst", nfeatures =5000)
}

那么我们仔细看一下刚才发生了什么,我们首先把我们的“P2”和“P3”设置为list,然后在for循环中我们分别进行了读取数据,提取线粒体基因比例,QC筛选,在metadata中添加新的一列,进行归一化并计算高变基因。最后将P2和P3合并在一个list中。

这时候一定会有好同志问这样一个问题,为什么在batch_data_list=list(“P2”=1,”P3”=1)中将P2和P3都赋值为1,这时候我们不妨不对其进行设置,使batch_data_list=list(“P2”,”P3”),我们会看见下图中的P2会消失哦!


在我们使用seurat中的FindAllMarkers()得到每个cluster的高变基因后,我也同时得到了一个csv表,可是我觉得太不直观了,于是我现在要循环出一些不同clusters的vlnplot,我应该怎么办呢?嗨,循环起来呀!

clustersss <-
  list(
    "0",
    "1",
    "2",
    "3",
    "4",
    "5",
    "6",
    "7",
    "8",
    "9",
    "10",
    "11",
    "12",
    "13",
    "14",
    "15",
    "16",
    "17",
    "18",
    "19",
    "20",
    "21",
    "22"
  )
for (i in clustersss) {
  for (m in 1:nrow(run.combined.markers)) {
    if (run.combined.markers["cluster"][m, ] == i) {
      filename <- paste(run.combined.markers$gene[m], 'VlnPlot.pdf', sep = '_')
      p <-
        VlnPlot(object = run.combined,
                features = c(run.combined.markers$gene[m]))
      print(p)
      ggsave(p,
             filename = paste(i, run.combined.markers$gene[m], 'VlnPlot.pdf', sep = '_'))
      dev.off()
    }
  }
}

我给解释一下上面的内容,首先我们把我们的cluster设为list,i代表cluster,m代表run.combined.marker的排序,使用两个for循环进行嵌套,最后在保存文件时将cluster+基因名+vlnplot结合进行保存。


每次看见这样出图我都特别有成就感,,,,哈哈哈哈,快have a try!

其实也可以写一个apply版的,获得所有plotList,再用patchworkcowplot进行拼图。

plotMarker <- function(cluster, run.combined) {
  for (m in 1:nrow(run.combined.markers)) {
    if (run.combined.markers["cluster"][m,] == cluster) {
      filename <-
        paste(run.combined.markers$gene[m], 'VlnPlot.pdf', sep = '_')
      p <-
        VlnPlot(object = run.combined,
                features = c(run.combined.markers$gene[m]))
      ggsave(p,
             filename = paste(i, run.combined.markers$gene[m], 'VlnPlot.pdf', sep = '_'))
      return(p)
    }
  }
}
plotList = lapply(clustersss, plotMarker, run.combined = run.combined)
  • 这个Nature推荐的代码海洋竟然有文章作者上传的所有可重现性脚本,涉及单细胞、微生物组、转录组分析、机器学习等相关
  • 10X单细胞测序分析软件:Cell ranger,从拆库到定量
  • NBT|45种单细胞轨迹推断方法比较,110个实际数据集和229个合成数据集
  • 重磅综述:三万字长文读懂单细胞RNA测序分析的最佳实践教程 (原理、代码和评述)
  • “harmony”整合不同平台的单细胞数据之旅

相关推荐

程序员请收好:10个非常有用的 Visual Studio Code 插件

一个插件列表,可以让你的程序员生活变得轻松许多。作者|Daan译者|Elle出品|CSDN(ID:CSDNnews)以下为译文:无论你是经验丰富的开发人员还是刚刚开始第一份工作的初级开发人...

PADS在WIN10系统中菜单显示不全的解决方法

决定由AD转PADS,打开发现菜单显示不正常,如下图所示:这个是由于系统的默认字体不合适导致,修改一下系统默认字体即可,修改方法如下:打开开始菜单-->所有程序-->Windows系统--...

一文讲解Web前端开发基础环境配置

先从基本的HTML语言开始学习。一个网页的所有内容都是基于HTML,为了学好HTML,不使用任何集成工具,而用一个文本编辑器,直接从最简单的HTML开始编写HTML。先在网上下载notepad++文...

TCP/IP协议栈在Linux内核中的运行时序分析

本文主要是讲解TCP/IP协议栈在Linux内核中的运行时序,文章较长,里面有配套的视频讲解,建议收藏观看。1Linux概述  1.1Linux操作系统架构简介Linux操作系统总体上由Linux...

从 Angular Route 中提前获取数据

#头条创作挑战赛#介绍提前获取意味着在数据呈现在屏幕之前获取到数据。本文中,你将学到,在路由更改前怎么获取到数据。通过本文,你将学会使用resolver,在AngularApp中应用re...

边做游戏边划水: 基于浅水方程的水面交互、河道交互模拟方法

以下文章来源于腾讯游戏学堂,作者Byreave篇一:基于浅水方程的水面交互本文主要介绍一种基于浅水方程的水体交互算法,在基本保持水体交互效果的前提下,实现了一种极简的水面模拟和物体交互方法。真实感的...

Nacos介绍及使用

一、Nacos介绍Nacos是SpringCloudAlibaba架构中最重要的组件。Nacos是一个更易于帮助构建云原生应用的动态服务发现、配置和服务管理平台,提供注册中心、配置中心和动态DNS...

Spring 中@Autowired,@Resource,@Inject 注解实现原理

使用案例前置条件:现在有一个Vehicle接口,它有两个实现类Bus和Car,现在还有一个类VehicleService需要注入一个Vehicle类型的Bean:publicinte...

一文带你搞懂Vue3 底层源码

作者:妹红大大转发链接:https://mp.weixin.qq.com/s/D_PRIMAD6i225Pn-a_lzPA前言vue3出来有一段时间了。今天正式开始记录一下梗vue3.0.0-be...

一线开发大牛带你深度解析探讨模板解释器,解释器的生成

解释器生成解释器的机器代码片段都是在TemplateInterpreterGenerator::generate_all()中生成的,下面将分小节详细展示该函数的具体细节,以及解释器某个组件的机器代码...

Nacos源码—9.Nacos升级gRPC分析五

大纲10.gRPC客户端初始化分析11.gRPC客户端的心跳机制(健康检查)12.gRPC服务端如何处理客户端的建立连接请求13.gRPC服务端如何映射各种请求与对应的Handler处理类14.gRP...

聊聊Spring AI的Tool Calling

序本文主要研究一下SpringAI的ToolCallingToolCallbackorg/springframework/ai/tool/ToolCallback.javapublicinter...

「云原生」Containerd ctr,crictl 和 nerdctl 命令介绍与实战操作

一、概述作为接替Docker运行时的Containerd在早在Kubernetes1.7时就能直接与Kubelet集成使用,只是大部分时候我们因熟悉Docker,在部署集群时采用了默认的dockers...

在MySQL登录时出现Access denied for user ~~ (using password: YES)

Windows~~~在MySQL登录时出现Accessdeniedforuser‘root‘@‘localhost‘(usingpassword:YES),并修改MySQL密码目录适用...

mysql 8.0多实例批量部署script

背景最近一个项目上,客户需要把阿里云的rdsformysql数据库同步至线下,用作数据的灾备,需要在线下的服务器上部署mysql8.0多实例,为了加快部署的速度,写了一个脚本。解决方案#!/bi...