百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

Kafka监控工具汇总 kafka集群监控

bigegpt 2024-10-19 02:48 9 浏览

对于大数据集群来说,监控功能是非常必要的,通过日志判断故障低效,我们需要完整的指标来帮我们管理Kafka集群。本文讨论Kafka的监控以及一些常用的第三方监控工具。

一、Kafka Monitoring

首先介绍kafka的监控原理,第三方工具也是通过这些来进行监控的,我们也可以自己去是实现监控,官网关于监控的文档地址如下:

http://kafka.apache.org/documentation/#monitoring](http://kafka.apache.org/documentation/#monitoring)

kafka使用Yammer Metrics进行监控,Yammer Metrics是一个java的监控库。

kafka默认有很多的监控指标,默认都使用JMX接口远程访问,具体方法是在启动broker和clients之前设置JMX_PORT:

JMX_PORT=9997 bin/kafka-server-start.sh config/server.properties

Kafka的每个监控指标都是以JMX MBEAN的形式定义的,MBEAN是一个被管理的资源实例。

我们可以使用Jconsole (Java Monitoring and Management Console),一种基于JMX的可视化监视、管理工具。

来可视化监控的结果:

图2 Jconsole

随后在Mbean下可以找到各种kafka的指标。

Mbean的命名规范是 kafka.xxx:type=xxx,xxx=xxx

主要分为以下几类:

(监控指标较多,这里只截取部分,具体请查看官方文档)

Graphing and Alerting 监控:

kafka.server为服务器相关,kafka.network为网络相关。

Description

Mbean name

Normal value

Message in rate

kafka.server:type=BrokerTopicMetrics,name=MessagesInPerSec


Byte in rate from clients

kafka.server:type=BrokerTopicMetrics,name=BytesInPerSec


Byte in rate from other brokers

kafka.server:type=BrokerTopicMetrics,name=ReplicationBytesInPerSec


Request rate

kafka.network:type=RequestMetrics,name=RequestsPerSec,request=


Error rate

kafka.network:type=RequestMetrics,name=ErrorsPerSec,request=([-.\w]+),error=([-.\w]+)

Number of errors in responses counted per-request-type, per-error-code. If a response contains multiple errors, all are counted. error=NONE indicates successful responses.

Common monitoring metrics for producer/consumer/connect/streams监控:

kafka运行过程中的监控。

Metric/Attribute name

Description

Mbean name

connection-close-rate

Connections closed per second in the window.

kafka.[producer|consumer|connect]:type=[producer|consumer|connect]-metrics,client-id=([-.\w]+)

connection-close-total

Total connections closed in the window.

kafka.[producer|consumer|connect]:type=[producer|consumer|connect]-metrics,client-id=([-.\w]+)

Common Per-broker metrics for producer/consumer/connect/streams监控:

每一个broker的监控。

Metric/Attribute name

Description

Mbean name

outgoing-byte-rate

The average number of outgoing bytes sent per second for a node.

kafka.[producer|consumer|connect]:type=[consumer|producer|connect]-node-metrics,client-id=([-.\w]+),node-id=([0-9]+)

outgoing-byte-total

The total number of outgoing bytes sent for a node.

kafka.[producer|consumer|connect]:type=[consumer|producer|connect]-node-metrics,client-id=([-.\w]+),node-id=([0-9]+)

Producer监控:

producer调用过程中的监控。

Metric/Attribute name

Description

Mbean name

waiting-threads

The number of user threads blocked waiting for buffer memory to enqueue their records.

kafka.producer:type=producer-metrics,client-id=([-.\w]+)

buffer-total-bytes

The maximum amount of buffer memory the client can use (whether or not it is currently used).

kafka.producer:type=producer-metrics,client-id=([-.\w]+)

buffer-available-bytes

The total amount of buffer memory that is not being used (either unallocated or in the free list).

kafka.producer:type=producer-metrics,client-id=([-.\w]+)

bufferpool-wait-time

The fraction of time an appender waits for space allocation.

kafka.producer:type=producer-metrics,client-id=([-.\w]+)

Consumer监控:

consumer调用过程中的监控。

Metric/Attribute name

Description

Mbean name

commit-latency-avg

The average time taken for a commit request

kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+)

commit-latency-max

The max time taken for a commit request

kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+)

commit-rate

The number of commit calls per second

kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+)

commit-total

The total number of commit calls

kafka.consumer:type=consumer-coordinator-metrics,client-id=([-.\w]+)

Connect监控:


Attribute name

Description


connector-count

The number of connectors run in this worker.


connector-startup-attempts-total

The total number of connector startups that this worker has attempted.

Streams 监控:

Metric/Attribute name

Description

Mbean name

commit-latency-avg

The average execution time in ms for committing, across all running tasks of this thread.

kafka.streams:type=stream-metrics,client-id=([-.\w]+)

commit-latency-max

The maximum execution time in ms for committing across all running tasks of this thread.

kafka.streams:type=stream-metrics,client-id=([-.\w]+)

poll-latency-avg

The average execution time in ms for polling, across all running tasks of this thread.

kafka.streams:type=stream-metrics,client-id=([-.\w]+)

这些指标涵盖了我们使用kafka过程中的各种情况,还有kafka.log记录日志信息。每一个Mbean下都有具体的参数。

通过这些参数,比如出站进站速率,ISR变化速率,Producer端的batch大小,线程数,Consumer端的延时大小,流速等等,当然我们也要关注JVM,还有OS层面的监控,这些都有通用的工具,这里不做赘述。

kafka的监控原理已经基本了解,其他第三方监控工具也大部分是在这个层面进行的完善,下面来介绍几款主流的监控工具。

二、JmxTool

JmxTool并不是一个框架,而是Kafka默认提供的一个工具,用于实时查看JMX监控指标。。

打开终端进入到Kafka安装目录下,输入命令bin/kafka-run-class.sh kafka.tools.JmxTool便可以得到JmxTool工具的帮助信息。

比如我们要监控入站速率,可以输入命令:

bin/kafka-run-class.sh kafka.tools.JmxTool --object-name kafka.server:type=BrokerTopicMetrics,name=BytesInPerSec --jmx-url service:jmx:rmi:///jndi/rmi://:9997/jmxrmi --date-format "YYYY-MM-dd HH:mm:ss" --attributes FifteenMinuteRate --reporting-interval 5000

BytesInPerSec的值每5秒会打印在控制台上:

>kafka_2.12-2.0.0 rrd$ bin/kafka-run-class.sh kafka.tools.JmxTool --object-name kafka.server:type=BrokerTopicMetrics,name=BytesInPerSec --jmx-url service:jmx:rmi:///jndi/rmi://:9997/jmxrmi --date-format "YYYY-MM-dd HH:mm:ss" --attributes FifteenMinuteRate --reporting-interval 5000

Trying to connect to JMX url: service:jmx:rmi:///jndi/rmi://:9997/jmxrmi.

"time","kafka.server:type=BrokerTopicMetrics,name=BytesInPerSec:FifteenMinuteRate"

2018-08-10 14:52:15,784224.2587058166

2018-08-10 14:52:20,1003401.2319497257

2018-08-10 14:52:25,1125080.6160773218

2018-08-10 14:52:30,1593394.1860063889

三、Kafka-Manager

雅虎公司2015年开源的kafka监控框架,使用scala编写。github地址如下:https://github.com/yahoo/kafka-manager

使用条件:

  1. Kafka 0.8.. or 0.9.. or 0.10.. or 0.11..
  2. Java 8+

下载kafka-manager

配置:conf/application.conf

kafka-manager.zkhosts="my.zookeeper.host.com:2181,other.zookeeper.host.com:2181"

部署:这里要用到sbt部署

./sbt clean dist

启动:

 bin/kafka-manager
 指定端口:
 $ bin/kafka-manager -Dconfig.file=/path/to/application.conf -Dhttp.port=8080
 权限:
 $ bin/kafka-manager -Djava.security.auth.login.config=/path/to/my-jaas.conf

随后访问local host:8080

就可以看到监控页面了:

图 topic

图 broker

页面非常的简洁,也有很多丰富的功能,开源免费,推荐使用,只是目前版本支持到Kafka 0.8.. or 0.9.. or 0.10.. or 0.11,需要特别注意。

四、kafka-monitor

linkin开源的kafka监控框架,github地址如下:https://github.com/linkedin/kafka-monitor

基于 Gradle 2.0以上版本,支持java 7和java 8.

支持kafka从0.8-2.0,用户可根据需求下载不同分支即可。

使用:

编译:

$ git clone https://github.com/linkedin/kafka-monitor.git
$ cd kafka-monitor 
$ ./gradlew jar

修改配置:config/kafka-monitor.properties

"zookeeper.connect" = "localhost:2181"

启动:

$ ./bin/kafka-monitor-start.sh config/kafka-monitor.properties
单集群启动:
$ ./bin/single-cluster-monitor.sh --topic test --broker-list localhost:9092 --zookeeper localhost:2181
多集群启动:
$ ./bin/kafka-monitor-start.sh config/multi-cluster-monitor.properties

随后访问localhost:8080 看到监控页面

图 kafkamonitor

同时我们还可以通过http请求查询其他指标:

curl localhost:8778/jolokia/read/kmf.services:type=produce-service,name=*/produce-availability-avg

总体来说,他的web功能比较简单,用户使用不多,http功能很有用,支持版本较多。

五、Kafka Offset Monitor

官网地址http://quantifind.github.io/KafkaOffsetMonitor/

github地址 https://github.com/quantifind/KafkaOffsetMonitor

使用:下载以后执行

java -cp KafkaOffsetMonitor-assembly-0.3.0.jar:kafka-offset-monitor-another-db-reporter.jar \
     com.quantifind.kafka.offsetapp.OffsetGetterWeb \
     --zk zk-server1,zk-server2 \
     --port 8080 \
     --refresh 10.seconds \
     --retain 2.days
     --pluginsArgs anotherDbHost=host1,anotherDbPort=555

随后查看localhost:8080

图 offsetmonitor1

图offsetmonitor2

这个项目更关注于对offset的监控,页面很丰富,但是15年以后不再更新,无法支持最新版本kafka。继续维护的版本地址如下https://github.com/Morningstar/kafka-offset-monitor。

六、Cruise-control

linkin于2017年8月开源了cruise-control框架,用于监控大规模集群,包括一系列的运维功能,据称在linkedin有着两万多台的kafka集群,项目还在持续更新中。

项目github地址:https://github.com/linkedin/cruise-control

使用:

下载
git clone https://github.com/linkedin/cruise-control.git && cd cruise-control/
编译
./gradlew jar
修改 config/cruisecontrol.properties
bootstrap.servers   zookeeper.connect
启动:
./gradlew jar copyDependantLibs
./kafka-cruise-control-start.sh [-jars PATH_TO_YOUR_JAR_1,PATH_TO_YOUR_JAR_2] config/cruisecontrol.properties [port]

启动后访问:

http://localhost:9090/kafkacruisecontrol/state

没有页面,所有都是用rest api的形式提供的。

接口列表如下:https://github.com/linkedin/cruise-control/wiki/REST-APIs

这个框架灵活性很大,用户可以根据自己的情况来获取各种指标优化自己的集群。

七、Doctorkafka

DoctorKafka是Pinterest 开源 Kafka 集群自愈和工作负载均衡工具。

Pinterest 是一个进行图片分享的社交站点。他们使用 Kafka 作为中心化的消息传输工具,用于数据摄取、流处理等场景。随着用户数量的增加,Kafka 集群也越来越庞大,对它的管理日趋复杂,并变成了运维团队的沉重负担,因此他们研发了 Kafka 集群自愈和工作负载均衡工具 DoctorKafka,最近他们已经在 GitHub 上将该项目开源。

使用:

下载:
git clone [git-repo-url] doctorkafka
cd doctorkafka
编译:
mvn package -pl kafkastats -am
启动:
java -server \
    -Dlog4j.configurationFile=file:./log4j2.xml \
    -cp lib/*:kafkastats-0.2.4.8.jar \
    com.pinterest.doctorkafka.stats.KafkaStatsMain \
        -broker 127.0.0.1 \
        -jmxport 9999 \
        -topic brokerstats \
        -zookeeper zookeeper001:2181/cluster1 \
        -uptimeinseconds 3600 \
        -pollingintervalinseconds 60 \
        -ostrichport 2051 \
        -tsdhostport localhost:18126 \
        -kafka_config /etc/kafka/server.properties \
        -producer_config /etc/kafka/producer.properties \
        -primary_network_ifacename eth0

页面如下:

图dockerkafka

DoctorKafka 在启动之后,会阶段性地检查每个集群的状态。当探测到 broker 出现故障时,它会将故障 broker 的工作负载转移给有足够带宽的 broker。如果在集群中没有足够的资源进行重分配的话,它会发出告警。属于一个自动维护集群健康的框架。

八、Burrow

Burrow是LinkedIn开源的一款专门监控consumer lag的框架。

github地址如下:https://github.com/linkedin/Burrow

使用Burrow监控kafka, 不需要预先设置lag的阈值, 他完全是基于消费过程的动态评估

Burrow支持读取kafka topic和,zookeeper两种方式的offset,对于新老版本kafka都可以很好支持

Burrow支持http, email类型的报警

Burrow默认只提供HTTP接口(HTTP endpoint),数据为json格式,没有web UI。

安装使用:

$ Clone github.com/linkedin/Burrow to a directory outside of $GOPATH. Alternatively, you can export GO111MODULE=on to enable Go module.
$ cd to the source directory.
$ go mod tidy
$ go install

示例:

列出所有监控的Kafka集群
curl -s http://localhost:8000/v3/kafka |jq
{
  "error": false,
  "message": "cluster list returned",
  "clusters": [
    "kafka",
    "kafka"
  ],
  "request": {
    "url": "/v3/kafka",
    "host": "kafka"
  }
}

其他的框架,还有kafka-web-console:https://github.com/claudemamo/kafka-web-console

kafkat:https://github.com/airbnb/kafkat

capillary:https://github.com/keenlabs/capillary

chaperone:https://github.com/uber/chaperone

还有很多,但是我们要结合自己的kafka版本情况进行选择。

相关推荐

当Frida来“敲”门(frida是什么)

0x1渗透测试瓶颈目前,碰到越来越多的大客户都会将核心资产业务集中在统一的APP上,或者对自己比较重要的APP,如自己的主业务,办公APP进行加壳,流量加密,投入了很多精力在移动端的防护上。而现在挖...

服务端性能测试实战3-性能测试脚本开发

前言在前面的两篇文章中,我们分别介绍了性能测试的理论知识以及性能测试计划制定,本篇文章将重点介绍性能测试脚本开发。脚本开发将分为两个阶段:阶段一:了解各个接口的入参、出参,使用Python代码模拟前端...

Springboot整合Apache Ftpserver拓展功能及业务讲解(三)

今日分享每天分享技术实战干货,技术在于积累和收藏,希望可以帮助到您,同时也希望获得您的支持和关注。架构开源地址:https://gitee.com/msxyspringboot整合Ftpserver参...

Linux和Windows下:Python Crypto模块安装方式区别

一、Linux环境下:fromCrypto.SignatureimportPKCS1_v1_5如果导包报错:ImportError:Nomodulenamed'Crypt...

Python 3 加密简介(python des加密解密)

Python3的标准库中是没多少用来解决加密的,不过却有用于处理哈希的库。在这里我们会对其进行一个简单的介绍,但重点会放在两个第三方的软件包:PyCrypto和cryptography上,我...

怎样从零开始编译一个魔兽世界开源服务端Windows

第二章:编译和安装我是艾西,上期我们讲述到编译一个魔兽世界开源服务端环境准备,那么今天跟大家聊聊怎么编译和安装我们直接进入正题(上一章没有看到的小伙伴可以点我主页查看)编译服务端:在D盘新建一个文件夹...

附1-Conda部署安装及基本使用(conda安装教程)

Windows环境安装安装介质下载下载地址:https://www.anaconda.com/products/individual安装Anaconda安装时,选择自定义安装,选择自定义安装路径:配置...

如何配置全世界最小的 MySQL 服务器

配置全世界最小的MySQL服务器——如何在一块IntelEdison为控制板上安装一个MySQL服务器。介绍在我最近的一篇博文中,物联网,消息以及MySQL,我展示了如果Partic...

如何使用Github Action来自动化编译PolarDB-PG数据库

随着PolarDB在国产数据库领域荣膺桂冠并持续获得广泛认可,越来越多的学生和技术爱好者开始关注并涉足这款由阿里巴巴集团倾力打造且性能卓越的关系型云原生数据库。有很多同学想要上手尝试,却卡在了编译数据...

面向NDK开发者的Android 7.0变更(ndk android.mk)

订阅Google官方微信公众号:谷歌开发者。与谷歌一起创造未来!受Android平台其他改进的影响,为了方便加载本机代码,AndroidM和N中的动态链接器对编写整洁且跨平台兼容的本机...

信创改造--人大金仓(Kingbase)数据库安装、备份恢复的问题纪要

问题一:在安装KingbaseES时,安装用户对于安装路径需有“读”、“写”、“执行”的权限。在Linux系统中,需要以非root用户执行安装程序,且该用户要有标准的home目录,您可...

OpenSSH 安全漏洞,修补操作一手掌握

1.漏洞概述近日,国家信息安全漏洞库(CNNVD)收到关于OpenSSH安全漏洞(CNNVD-202407-017、CVE-2024-6387)情况的报送。攻击者可以利用该漏洞在无需认证的情况下,通...

Linux:lsof命令详解(linux lsof命令详解)

介绍欢迎来到这篇博客。在这篇博客中,我们将学习Unix/Linux系统上的lsof命令行工具。命令行工具是您使用CLI(命令行界面)而不是GUI(图形用户界面)运行的程序或工具。lsoflsof代表&...

幻隐说固态第一期:固态硬盘接口类别

前排声明所有信息来源于网络收集,如有错误请评论区指出更正。废话不多说,目前固态硬盘接口按速度由慢到快分有这几类:SATA、mSATA、SATAExpress、PCI-E、m.2、u.2。下面我们来...

新品轰炸 影驰SSD多款产品登Computex

分享泡泡网SSD固态硬盘频道6月6日台北电脑展作为全球第二、亚洲最大的3C/IT产业链专业展,吸引了众多IT厂商和全球各地媒体的热烈关注,全球存储新势力—影驰,也积极参与其中,为广大玩家朋友带来了...