百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

浅谈Kafka2.8+在Windows下的搭建与使用

bigegpt 2024-10-19 02:49 9 浏览

前言:

周末空闲时间无意找到了一套个性化推荐的源码,整体项目运用了SSH,HDFS,Flume,Hive,Kafka,Spark,Scala等。运行时,本来通过spark计算业务埋点数据时,却发现本地没有Kafka。因为我一直也没使用过Kafka,所以也作为新人,浅谈以下Kafka的环境安装与分别在PHP,Scala中的使用。


对比:

1. 横向,相比其他中间件。

关于kafka与其他消息中间件的比较,网上很多的博主,不管是从运行原理还是中间件架构都有很详细的介绍。因为我平时用Rabbit居多,在没有看别人介绍前。Rabbi比Kafka于PHP开发更友好。因为kafka除了PHP的composer依赖包常年不更新外,kafka在windows下的PHP扩展需要自己编译。从这一点上看Rabbit就更适合业务性的消息队列,更别说他还有事务等对消息消费的高保障。kafka在数据增量方面更具优势,所以多数在大数据和推荐系统中都有运用。

2. 纵向,相比其他版本。

如标题所见,这里主要是2.8+与之前版本的对比。因为在2.8以前,kafka安装前需要安装zookeeper。这里只是一小个区别,其他的新特性具体参考kafka官方文档,因为我看到网上关于kafka的安装文章,别人都会安装zookeeper,所以这里就特别说明以下,以及后面启动时与其他人博客的不同。

安装:

1. 下载

下载地址可以在浏览器搜索kafka官网自行下载,见上图。

2. 配置

下载完后目录结构如下,进入config, 主要对zookeeper.properties和server.properties进行分布节点,服务端口,日志存放目录等等的设置,前期也是什么不用管保持默认配置进行启动。

3. 启动

也不知道是不是从2.8开始,bin目录下多了一个windows。所以在windows下启动进入到改目录,运行如下命令执行bat文件。注意启动的时候先zookeeper后kafka,停止的时候先kafka后zookeeper。

(1). zookeeper启动

zookeeper-server-start.bat ..\..\config\zookeeper.properties &

(2).kafka启动

kafka-server-start.bat ..\..\config\server.properties &

(3). 其他命令

查看所有topics
kafka-topics.bat --list --zookeeper localhost:2181
新增topics 
kafka-topics.bat --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic test


Kafka存储机制:

  • topic中partition存储分布
  • partiton中文件存储方式
  • partiton中segment文件存储结构
  • 在partition中通过offset查找message

图形化工具:

前期可以借助图形化工具快速具象的查看kafka的消息数据,也能便于理解其基本操作流程。以下推荐一块桌面端工具——offsetexplorer,可以在网上搜索下载,当然web控制台也不错,比如kafka manager。

1. kafka连接

(2). Cluster name查看

这个值如果没有设置的情况是生成的,可以在启动日志中查看,根目录/logs/server.log

(3). Topics查看

通过运行一下新增topics或新增消息后就可以在Offset Explorer查看了,更多的使用方法也可以在网上找到。


PHP操作:

1. 下载依赖

composer require nmred/kafka-php

2. 生产者 Producer.php

<?php
 
require './vendor/autoload.php';
 
date_default_timezone_set('PRC');
 
/* 创建一个配置实例 */
$config = \Kafka\ProducerConfig::getInstance();
 
/* Topic的元信息刷新的间隔 */
$config->setMetadataRefreshIntervalMs(10000);
 
/* 设置broker的地址 */
$config->setMetadataBrokerList('127.0.0.1:9092');
 
/* 设置broker的代理版本 */
$config->setBrokerVersion('1.0.0');
 
/* 只需要leader确认消息 */
$config->setRequiredAck(1);
 
/* 选择异步 */
$config->setIsAsyn(false);
 
/* 每500毫秒发送消息 */
$config->setProduceInterval(500);
 
/* 创建一个生产者实例 */
$producer = new \Kafka\Producer();
 
for($i = 0; $i < 100; $i++ ) {
    $producer->send([
        [
            'topic' => 'test', 
            'value' => 'test'.$i, 
        ],
    ]);
}

3. 消费者 Consumer.php

<?php
 
require './vendor/autoload.php';
 
date_default_timezone_set('PRC');
 
$config = \Kafka\ConsumerConfig::getInstance();
$config->setMetadataRefreshIntervalMs(10000);
$config->setMetadataBrokerList('127.0.0.1:9092');
$config->setGroupId('test');
$config->setBrokerVersion('1.0.0');
$config->setTopics(['test']);
 
$consumer = new \Kafka\Consumer();
$consumer->start(function($topic, $part, $message) {
    var_dump($message);
});


Scala操作:

1. 创建基于Maven的Scala项目

(1). 创建

(2). 添加模板(没有模板的前提)

可以网上搜索Scala-archetype-simple的位置并填写。

(3). 完成创建等待IDE自动构建

(4). 给项目添加Scala SDK依赖

2. 配置

(1). 修改pom.xml的scala版本为本地安装scala对应的号。

(2). Cannot resolve plugin org.scala-tools:maven-scala-plugin: unknown解决方法

添加一下依赖后再Maven刷新 

<dependency>
      <groupId>org.scala-tools</groupId>
      <artifactId>maven-scala-plugin</artifactId>
      <version>2.11</version>
    </dependency>
    <dependency>
      <groupId>org.apache.maven.plugins</groupId>
      <artifactId>maven-eclipse-plugin</artifactId>
      <version>2.5.1</version>
    </dependency>

3. 添加kafka依赖

<!--kafka-->
<dependency>
  <groupId>org.apache.kafka</groupId>
  <artifactId>kafka_2.11</artifactId>
  <version>1.1.0</version>
</dependency>

<dependency>
  <groupId>org.apache.kafka</groupId>
  <artifactId>kafka-clients</artifactId>
  <version>1.1.0</version>
</dependency>

4. 创建消费者

package com.xudong

import java.util.Properties
import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord, RecordMetadata}

object KafkaProducerDemo {

  def main(args: Array[String]): Unit = {
    val prop = new Properties
    // 指定请求的kafka集群列表
    prop.put("bootstrap.servers", "127.0.0.1:9092")
    prop.put("acks", "all")
    // 请求失败重试次数
    //prop.put("retries", "3")
    // 指定key的序列化方式, key是用于存放数据对应的offset
    prop.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer")
    // 指定value的序列化方式
    prop.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer")
    // 配置超时时间
    prop.put("request.timeout.ms", "60000")

    val producer = new KafkaProducer[String, String](prop)

    // 发送给kafka
    for (i <- 1 to 25) {
      val msg = s"${i}: this is a linys ${i} kafka data"
      println("send -->" + msg)
      val rmd: RecordMetadata = producer.send(new ProducerRecord[String, String]("ceshi", msg)).get()
      println(rmd.toString)
      Thread.sleep(500)
    }

    producer.close()
  }

}

5. 创建消费者

package com.xudong

import java.util.{Collections, Properties}
import org.apache.kafka.clients.consumer.{ConsumerRecords, KafkaConsumer}

object KafkaConsumerDemo {

  def main(args: Array[String]): Unit = {
    val prop = new Properties
    prop.put("bootstrap.servers", "127.0.0.1:9092")
    prop.put("group.id", "group01")
    prop.put("auto.offset.reset", "earliest")
    prop.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
    prop.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer")
    prop.put("enable.auto.commit", "true")
    prop.put("session.timeout.ms", "30000")
    val kafkaConsumer = new KafkaConsumer[String, String](prop)
    kafkaConsumer.subscribe(Collections.singletonList("ceshi"))
    // 开始消费数据
    while (true) {
      val msgs: ConsumerRecords[String, String] = kafkaConsumer.poll(2000)
      // println(msgs.count())
      val it = msgs.iterator()
      while (it.hasNext) {
        val msg = it.next()
        println(s"partition: ${msg.partition()}, offset: ${msg.offset()}, key: ${msg.key()}, value: ${msg.value()}")
      }
    }
  }

}

相关推荐

当Frida来“敲”门(frida是什么)

0x1渗透测试瓶颈目前,碰到越来越多的大客户都会将核心资产业务集中在统一的APP上,或者对自己比较重要的APP,如自己的主业务,办公APP进行加壳,流量加密,投入了很多精力在移动端的防护上。而现在挖...

服务端性能测试实战3-性能测试脚本开发

前言在前面的两篇文章中,我们分别介绍了性能测试的理论知识以及性能测试计划制定,本篇文章将重点介绍性能测试脚本开发。脚本开发将分为两个阶段:阶段一:了解各个接口的入参、出参,使用Python代码模拟前端...

Springboot整合Apache Ftpserver拓展功能及业务讲解(三)

今日分享每天分享技术实战干货,技术在于积累和收藏,希望可以帮助到您,同时也希望获得您的支持和关注。架构开源地址:https://gitee.com/msxyspringboot整合Ftpserver参...

Linux和Windows下:Python Crypto模块安装方式区别

一、Linux环境下:fromCrypto.SignatureimportPKCS1_v1_5如果导包报错:ImportError:Nomodulenamed'Crypt...

Python 3 加密简介(python des加密解密)

Python3的标准库中是没多少用来解决加密的,不过却有用于处理哈希的库。在这里我们会对其进行一个简单的介绍,但重点会放在两个第三方的软件包:PyCrypto和cryptography上,我...

怎样从零开始编译一个魔兽世界开源服务端Windows

第二章:编译和安装我是艾西,上期我们讲述到编译一个魔兽世界开源服务端环境准备,那么今天跟大家聊聊怎么编译和安装我们直接进入正题(上一章没有看到的小伙伴可以点我主页查看)编译服务端:在D盘新建一个文件夹...

附1-Conda部署安装及基本使用(conda安装教程)

Windows环境安装安装介质下载下载地址:https://www.anaconda.com/products/individual安装Anaconda安装时,选择自定义安装,选择自定义安装路径:配置...

如何配置全世界最小的 MySQL 服务器

配置全世界最小的MySQL服务器——如何在一块IntelEdison为控制板上安装一个MySQL服务器。介绍在我最近的一篇博文中,物联网,消息以及MySQL,我展示了如果Partic...

如何使用Github Action来自动化编译PolarDB-PG数据库

随着PolarDB在国产数据库领域荣膺桂冠并持续获得广泛认可,越来越多的学生和技术爱好者开始关注并涉足这款由阿里巴巴集团倾力打造且性能卓越的关系型云原生数据库。有很多同学想要上手尝试,却卡在了编译数据...

面向NDK开发者的Android 7.0变更(ndk android.mk)

订阅Google官方微信公众号:谷歌开发者。与谷歌一起创造未来!受Android平台其他改进的影响,为了方便加载本机代码,AndroidM和N中的动态链接器对编写整洁且跨平台兼容的本机...

信创改造--人大金仓(Kingbase)数据库安装、备份恢复的问题纪要

问题一:在安装KingbaseES时,安装用户对于安装路径需有“读”、“写”、“执行”的权限。在Linux系统中,需要以非root用户执行安装程序,且该用户要有标准的home目录,您可...

OpenSSH 安全漏洞,修补操作一手掌握

1.漏洞概述近日,国家信息安全漏洞库(CNNVD)收到关于OpenSSH安全漏洞(CNNVD-202407-017、CVE-2024-6387)情况的报送。攻击者可以利用该漏洞在无需认证的情况下,通...

Linux:lsof命令详解(linux lsof命令详解)

介绍欢迎来到这篇博客。在这篇博客中,我们将学习Unix/Linux系统上的lsof命令行工具。命令行工具是您使用CLI(命令行界面)而不是GUI(图形用户界面)运行的程序或工具。lsoflsof代表&...

幻隐说固态第一期:固态硬盘接口类别

前排声明所有信息来源于网络收集,如有错误请评论区指出更正。废话不多说,目前固态硬盘接口按速度由慢到快分有这几类:SATA、mSATA、SATAExpress、PCI-E、m.2、u.2。下面我们来...

新品轰炸 影驰SSD多款产品登Computex

分享泡泡网SSD固态硬盘频道6月6日台北电脑展作为全球第二、亚洲最大的3C/IT产业链专业展,吸引了众多IT厂商和全球各地媒体的热烈关注,全球存储新势力—影驰,也积极参与其中,为广大玩家朋友带来了...