百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

kafka新老集群平滑迁移实战 kafka集群数据迁移

bigegpt 2024-10-19 02:49 11 浏览

前言


公司一直使用云上的kafka服务,随着业务规模和体量的增大,使用云上的服务成本相对比较高,所以考虑本地自建kafka集群对外提供服务。


因此,需要把正在运行的还在使用云上kafka的业务服务迁移到本地自建集群上。


要求


  • 代码改动小
  • 升级过程中的稳定性
  • 升级后消息发送与消费的正确性


迁移方案


1、双写/双读


顾名思义,生产端:消息同时发送新、老集群,消费端:同时消费两个集群的消息。



等到确认新集群的稳定和消息正确性后,逐渐下掉对老集群的依赖。


发送端双写还好做,难点在于消费端消费迁移实现上,主要可能有以下几种问题:


  • 如果采用先消费到备库上,后续备库再切换为主库,很多业务在其目前场景下其实很难实现。


  • 消费端对新集群消息的消费逻辑只是空转意义不大,如果期望检测消费的新、老集群的消息一致性,开发成本也是比较高。


  • 消费端不采用双读方案,不消费新集群的消息。最后直接切换到新集群开始消费,这样需要保证消费的幂等性。但是很多场景下是无法保证的,比如使用了第三方大数据相关的组件。


  • 采用双写/双读的方案,很多项目相关负责的同学,肯定也是无法接受的,毕竟代码改造太多了,开发成本太高。


所以,优先不考虑这种方案,采用了下面这种数据同步的方案。


2、数据同步


采用消息同步工具,将老集群的消息直接同步到新集群,客户端不再需要双读/双写,最后切换的时候直接修改为新集群的地址,重新发布即可。


整个过程如下:



最后下掉老集群。


这样无论对发送端或消费端都是是极其友好,且“平滑”。


我最终考虑并采用的是这个方案,唯一的问题便是迁移过程中的所有问题和压力都从业务侧的同学转移到我们这边,比如:发送的消息如何同步,如何避免消费端切换后,重复消费或者漏掉消息未消费。


迁移过程


迁移基本流程正如前面流程图展示的:数据同步->迁移生产端/消费端。


生产端和消费端没有先后切换新集群上的顺序要求,但是如果先把生产端切换到新集群,消费端就无法从老集群继续消费消息了,需要在消息的过期时间内,赶紧也切换到新集群。


但是如果消费端先切,则发送端可以在之后的任何时间。


1、消息同步


消息同步是第一步,kafka的消息同步工具在业内有做的比较好的商业版提供,同时也有开源版本供使用。


我选取的是官方自带的kafka-mirror-maker工具。


但是不能直接拿来用,否则同步过来的消息无法继续我下面的方案。


kafka-mirror-maker的默认实现就是消费老集群指定topic的消息并重新发送到新集群,且发送的时候未指定分区。但是我需要保证新老集群上每条消息在每个分区上的顺序保持一致,不能出现消息在老集群的分区0上,同步后被发送到新集群的分区1上。


因此进行适当改造,如下,构造消息的时候指定发送的分区:


  private[tools] object defaultMirrorMakerMessageHandler extends MirrorMakerMessageHandler {
    override def handle(record: BaseConsumerRecord): util.List[ProducerRecord[Array[Byte], Array[Byte]]] = {
      val timestamp: java.lang.Long = if (record.timestamp == RecordBatch.NO_TIMESTAMP) null else record.timestamp
      Collections.singletonList(new ProducerRecord(record.topic, record.partition, timestamp, record.key, record.value, record.headers))
    }
  }


重新编译打包。


其实执行同步前,确保要同步的topic,已经在新集群创建并且新、老集群的分区数保持一致。


最后,同步的时候,我们并不需要一次性把所有的topic消息都向新集群同步。有针对性的处理,要迁移哪个服务,同步对应该topic的消息,迁移完成,停掉对应的同步进程,然后继续下个服务。


当然为了方便,我同时开发了对应的启停脚本,尽可能方便、规范的进行。


下面是我计划的协作流程:



因为我们自建集群开启了ACL,老集群并没有,所以中间涉及到ACL相关的处理。


2、消费位点同步


消费端切换集群这一步问题也是最多最复杂的。


对于生产者来说,因为作了消息同步,新老集群消息及消息在分区的位置都是一致的,所以直接修改地址切换新集群继续发送即可。


对于消费端来说,如何在切换到新集群后,还能继续相对于老集群中原来的消费位点继续消费是一个问题,需要保证消息不会重复消费,也不会丢失消费。所以计算在新集群中的消费位点是很重要的。


正常情况下,kafka是没有创建消费组的功能,我们现在要做的就是,如果消费端切换新集群后,就已经知道现在要做的这个消费组要从这个位点继续消费了。


对于这个问题,我开发了一个功能,可以新增订阅:



输入一个消费组,并选择集群已经存在topic,创建订阅关系,示例如下,我创建一个订阅test_topic的消费组:



如果现在消费组为test_consumer的消费端,现在要从老集群切换到新集群继续消费,我们只要保证它不会出现重复消费,也不会漏掉消息即可。


所以这里解决方案的关键点就是需要将每个分区的消费位点,进行重置,重置的位置就是想当于在老集群中消费到的消息位点。


这个位点计算还是比较麻烦的,因为新老集群中各分区位点是一定不一致的。比如对于test_topic,可能此时的最小位点是1001(1001以前的消息过期删除了),日志最大位点是1300,所以现在实际某个分区有300条消息。但是同步到新集群,位点是从0开始,该分区在新集群最大位点就是300。


如果同步进程运行了好久,消费端才迁移新集群,新老集群的消息留存时间又不太一致,都删过几次过期消息,则老集群可能日志的最小位点是3001,最大位点是3300,新集群的最小位点是1000,最大位点是2300,两个集群现在留存的消息数都不一致了。


所以我这里采用了两阶段的同步方案:


  • 准备同步消息的时候,进行位点标记
  • 准备迁移消费端的时候,进行消费位点同步




大概就是上面说明的,通过相关的标记和计算确保新老集群消费的相对位点在各处场景下都是一致的,同步功能做了必要的效验,会保证同步的时候环境是预期的否则同步不了。如果最后同步阶段失败,则清除新集群中该topic相关数据,重新同步,重新执行这个流程即可(兜底解决方案)。


数据同步问题


数据同步过程中也是可能出现问题的,有些难以预料且致命的,如果消费端还没迁移,我们可以清除数据,重新同步,影响不大。


如果在同步过程中,同步进程挂掉,重启可能导致新老集群数据不一致。因为同步也是一边消费老集群一边发送到新集群,所以无法保证在挂掉重启的时候,是否会重复同步那一批次消息。


这个时候也是有解决方案的:


上面说过,在同步前进行了相关位移对齐,这时候可以查看相关对齐信息,人工重置用来同步的消费组的消费位点来保证消息一致。


最后,如何确认新老集群的消息是一致。这个时候假定同步过程,消息体没有出问题(这个出问题确实不好校验,认命了),只要查看对齐记录里的位移信息进行计算,确认从同步一来,新老集群每个分区的消息数都是一样,就可以确认消息一致的(不保证消息体的内容也没问题,比如丢包导致的)。


作者丨不识君的荒漠

来源丨网址:https://blog.csdn.net/x763795151/article/details/121070563

dbaplus社群欢迎广大技术人员投稿,投稿邮箱:editor@dbaplus.cn


更多精彩内容

dbaplus社群最新一期直播【话题接力丨智能运维AIOps难落地呼声极高,如何破局?将于9月16日晚8点开播,dbaplus社群邀请到京东科技 智能运维算法负责人-张静、蚂蚁集团 AIOps技术专家-徐新龙在云上汇聚,希望通过汇集两位运维专家的研究成果和实践积累,给大家进一步明确智能运维发展的方向,提供可参考、可落地的智能运维实战经验。

直播地址:http://z-mz.cn/5lIbo

关于我们

dbaplus社群是围绕Database、BigData、AIOps的企业级专业社群。资深大咖、技术干货,每天精品原创文章推送,每周线上技术分享,每月线下技术沙龙,每季度Gdevops&DAMS行业大会。

关注公众号【dbaplus社群】,获取更多原创技术文章和精选工具下载

相关推荐

当Frida来“敲”门(frida是什么)

0x1渗透测试瓶颈目前,碰到越来越多的大客户都会将核心资产业务集中在统一的APP上,或者对自己比较重要的APP,如自己的主业务,办公APP进行加壳,流量加密,投入了很多精力在移动端的防护上。而现在挖...

服务端性能测试实战3-性能测试脚本开发

前言在前面的两篇文章中,我们分别介绍了性能测试的理论知识以及性能测试计划制定,本篇文章将重点介绍性能测试脚本开发。脚本开发将分为两个阶段:阶段一:了解各个接口的入参、出参,使用Python代码模拟前端...

Springboot整合Apache Ftpserver拓展功能及业务讲解(三)

今日分享每天分享技术实战干货,技术在于积累和收藏,希望可以帮助到您,同时也希望获得您的支持和关注。架构开源地址:https://gitee.com/msxyspringboot整合Ftpserver参...

Linux和Windows下:Python Crypto模块安装方式区别

一、Linux环境下:fromCrypto.SignatureimportPKCS1_v1_5如果导包报错:ImportError:Nomodulenamed'Crypt...

Python 3 加密简介(python des加密解密)

Python3的标准库中是没多少用来解决加密的,不过却有用于处理哈希的库。在这里我们会对其进行一个简单的介绍,但重点会放在两个第三方的软件包:PyCrypto和cryptography上,我...

怎样从零开始编译一个魔兽世界开源服务端Windows

第二章:编译和安装我是艾西,上期我们讲述到编译一个魔兽世界开源服务端环境准备,那么今天跟大家聊聊怎么编译和安装我们直接进入正题(上一章没有看到的小伙伴可以点我主页查看)编译服务端:在D盘新建一个文件夹...

附1-Conda部署安装及基本使用(conda安装教程)

Windows环境安装安装介质下载下载地址:https://www.anaconda.com/products/individual安装Anaconda安装时,选择自定义安装,选择自定义安装路径:配置...

如何配置全世界最小的 MySQL 服务器

配置全世界最小的MySQL服务器——如何在一块IntelEdison为控制板上安装一个MySQL服务器。介绍在我最近的一篇博文中,物联网,消息以及MySQL,我展示了如果Partic...

如何使用Github Action来自动化编译PolarDB-PG数据库

随着PolarDB在国产数据库领域荣膺桂冠并持续获得广泛认可,越来越多的学生和技术爱好者开始关注并涉足这款由阿里巴巴集团倾力打造且性能卓越的关系型云原生数据库。有很多同学想要上手尝试,却卡在了编译数据...

面向NDK开发者的Android 7.0变更(ndk android.mk)

订阅Google官方微信公众号:谷歌开发者。与谷歌一起创造未来!受Android平台其他改进的影响,为了方便加载本机代码,AndroidM和N中的动态链接器对编写整洁且跨平台兼容的本机...

信创改造--人大金仓(Kingbase)数据库安装、备份恢复的问题纪要

问题一:在安装KingbaseES时,安装用户对于安装路径需有“读”、“写”、“执行”的权限。在Linux系统中,需要以非root用户执行安装程序,且该用户要有标准的home目录,您可...

OpenSSH 安全漏洞,修补操作一手掌握

1.漏洞概述近日,国家信息安全漏洞库(CNNVD)收到关于OpenSSH安全漏洞(CNNVD-202407-017、CVE-2024-6387)情况的报送。攻击者可以利用该漏洞在无需认证的情况下,通...

Linux:lsof命令详解(linux lsof命令详解)

介绍欢迎来到这篇博客。在这篇博客中,我们将学习Unix/Linux系统上的lsof命令行工具。命令行工具是您使用CLI(命令行界面)而不是GUI(图形用户界面)运行的程序或工具。lsoflsof代表&...

幻隐说固态第一期:固态硬盘接口类别

前排声明所有信息来源于网络收集,如有错误请评论区指出更正。废话不多说,目前固态硬盘接口按速度由慢到快分有这几类:SATA、mSATA、SATAExpress、PCI-E、m.2、u.2。下面我们来...

新品轰炸 影驰SSD多款产品登Computex

分享泡泡网SSD固态硬盘频道6月6日台北电脑展作为全球第二、亚洲最大的3C/IT产业链专业展,吸引了众多IT厂商和全球各地媒体的热烈关注,全球存储新势力—影驰,也积极参与其中,为广大玩家朋友带来了...