一般情况下,都是用RGB来表示颜色,但是如果要进行颜色识别和检测,则需要使用HSV颜色空间。
HSV(Hue, Saturation, Value)是根据颜色的直观特性由A. R. Smith在1978年创建的一种颜色空间, 也称六角锥体模型(Hexcone Model)。这个模型中颜色的参数分别是:色调(H),饱和度(S),亮度(V)。
RGB和CMY颜色模型都是面向硬件的,而HSV(Hue Saturation Value)颜色模型是面向用户的。HSV模型的三维表示从RGB立方体演化而来。设想从RGB沿立方体对角线的白色顶点向黑色顶点观察,就可以看到立方体的六边形外形。六边形边界表示色彩,水平轴表示纯度,明度沿垂直轴测量。
根据HSV颜色对照表,把各种颜色分量保存在一个字典里,下面以检测识别红色1为例:
import numpy as np
import cv2
font= cv2.FONT_HERSHEY_SIMPLEX
#把颜色保存一个字典里。
def getColorList():
color_dict = {}
# 黑色
lower_black = np.array([0, 0, 0])
upper_black = np.array([180, 255, 46])
color_list = []
color_list.append(lower_black)
color_list.append(upper_black)
color_dict['black'] = color_list
#灰色
lower_gray = np.array([0, 0, 46])
upper_gray = np.array([180, 43, 220])
color_list = []
color_list.append(lower_gray)
color_list.append(upper_gray)
color_dict['gray']=color_list
# 白色
lower_white = np.array([0, 0, 221])
upper_white = np.array([180, 30, 255])
color_list = []
color_list.append(lower_white)
color_list.append(upper_white)
color_dict['white'] = color_list
#红色
lower_red = np.array([156, 43, 46])
upper_red = np.array([180, 255, 255])
color_list = []
color_list.append(lower_red)
color_list.append(upper_red)
color_dict['red1']=color_list
# 红色2
lower_red = np.array([0, 43, 46])
upper_red = np.array([10, 255, 255])
color_list = []
color_list.append(lower_red)
color_list.append(upper_red)
color_dict['red2'] = color_list
#橙色
lower_orange = np.array([11, 43, 46])
upper_orange = np.array([25, 255, 255])
color_list = []
color_list.append(lower_orange)
color_list.append(upper_orange)
color_dict['orange'] = color_list
#黄色
lower_yellow = np.array([26, 43, 46])
upper_yellow = np.array([34, 255, 255])
color_list = []
color_list.append(lower_yellow)
color_list.append(upper_yellow)
color_dict['yellow'] = color_list
#绿色
lower_green = np.array([35, 43, 46])
upper_green = np.array([77, 255, 255])
color_list = []
color_list.append(lower_green)
color_list.append(upper_green)
color_dict['green'] = color_list
#青色
lower_cyan = np.array([78, 43, 46])
upper_cyan = np.array([99, 255, 255])
color_list = []
color_list.append(lower_cyan)
color_list.append(upper_cyan)
color_dict['cyan'] = color_list
#蓝色
lower_blue = np.array([100, 43, 46])
upper_blue = np.array([124, 255, 255])
color_list = []
color_list.append(lower_blue)
color_list.append(upper_blue)
color_dict['blue'] = color_list
# 紫色
lower_purple = np.array([125, 43, 46])
upper_purple = np.array([155, 255, 255])
color_list = []
color_list.append(lower_purple)
color_list.append(upper_purple)
color_dict['purple'] = color_list
return color_dict
#取红色1HSV上下分量值
color_dict=getColorList()
lower_red=color_dict["red1"][0]
higher_red=color_dict["red1"][1]
#识别和检测红色1
cap=cv2.VideoCapture(0)#打开电脑内置摄像头
if(cap.isOpened()):
while(True):
ret,frame=cap.read()#读取帧
img_hsv=cv2.cvtColor(frame,cv2.COLOR_BGR2HSV)
mask_red=cv2.inRange(img_hsv,lower_red,higher_red)#获得红色1的掩膜
mask_red = cv2.medianBlur(mask_red, 7) # 中值滤波,去噪
#只检测外轮廓信息,并存储所有边界点
contours, hierarchy=cv2.findContours(mask_red,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE)#轮廓检测
for cnt in contours:
(x,y,w,h)=cv2.boundingRect(cnt)#该函数返回矩阵四个点
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 0, 255), 2)#将检测到的颜色框起来
cv2.putText(frame,'red',(x,y-5),font,0.7,(0,0,255),2)
cv2.imshow('frame',frame)
k=cv2.waitKey(20)&0xFF
if k ==27:
break
cv2.waitKey(0)
cv2.destroyAllWindows()