百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

Python 数据可视化神器分享:pyecharts

bigegpt 2024-10-20 04:26 2 浏览

文 | wengjj

编辑 | EarlGrey

我们都知道python上的一款可视化工具matplotlib,而前些阵子做一个Spark项目的时候用到了百度开源的一个可视化JS工具-Echarts,可视化类型非常多,但是得通过导入js库在Java Web项目上运行。

平时用Python比较多,于是就在想有没有Python与Echarts结合的轮子。Google后,找到一个国人开发的一个Echarts与Python结合的轮子:pyecharts,下面就来简述下pyecharts一些使用细则:

写这篇文章用的是Win环境,首先打开命令行(win+R),输入:

但笔者实测时发现,由于墙的原因,下载时会出现断线和速度过慢的问题导致下载失败,所以建议通过清华镜像来进行下载:

  1. pip install -i https://pypi.tuna.tsinghua.edu.cn/simple pyecharts

出现上方的信息,即代表下载成功,我们可以来进行下一步的实验了!

使用之前我们要强调一点:就是python2.xpython3.x的编码问题,在python3.x中你可以把它看做默认是unicode编码,但在python2.x中并不是默认的,原因就在它的bytes对象定义的混乱,而pycharts是使用unicode编码来处理字符串和文件的,所以当你使用的是python2.x时,请务必在上方插入此代码:

  1. from __future__ import unicode_literals

现在我们来开始正式使用pycharts,这里我们直接使用官方的数据:

柱状图-Bar

  1. //导入柱状图-Bar

  2. from pyecharts import Bar

  3. //设置行名

  4. columns = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]

  5. //设置数据

  6. data1 = [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]

  7. data2 = [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]

  8. //设置柱状图的主标题与副标题

  9. bar = Bar("柱状图", "一年的降水量与蒸发量")

  10. //添加柱状图的数据及配置项

  11. bar.add("降水量", columns, data1, mark_line=["average"], mark_point=["max", "min"])

  12. bar.add("蒸发量", columns, data2, mark_line=["average"], mark_point=["max", "min"])

  13. //生成本地文件(默认为.html文件)

  14. bar.render

运行结果如下:

简单的几行代码就可以将数据进行非常好看的可视化,而且还是动态的,在这里还是要安利一下jupyter,pyecharts在v0.1.9.2版本开始,在jupyter上直接调用实例(例如上方直接调用bar)就可以将图表直接表示出来,非常方便。

笔者数了数,目前pyecharts上的图表大概支持到二十多种,接下来,我们再用上方的数据来生成几个数据挖掘常用的图表示例:

饼图-Pie

  1. //导入饼图Pie

  2. from pyecharts import Pie

  3. //设置主标题与副标题,标题设置居中,设置宽度为900

  4. pie = Pie("饼状图", "一年的降水量与蒸发量",title_pos='center',width=900)

  5. //加入数据,设置坐标位置为【25,50】,上方的colums选项取消显示

  6. pie.add("降水量", columns, data1 ,center=[25,50],is_legend_show=False)

  7. //加入数据,设置坐标位置为【75,50】,上方的colums选项取消显示,显示label标签

  8. pie.add("蒸发量", columns, data2 ,center=[75,50],is_legend_show=False,is_label_show=True)

  9. //保存图表

  10. pie.render

箱体图-Boxplot

  1. //导入箱型图Boxplot

  2. from pyecharts import Boxplot

  3. boxplot = Boxplot("箱形图", "一年的降水量与蒸发量")

  4. x_axis = ['降水量','蒸发量']

  5. y_axis = [data1,data2]

  6. //prepare_data方法可以将数据转为嵌套的 [min, Q1, median (or Q2), Q3, max]

  7. yaxis = boxplot.prepare_data(y_axis)

  8. boxplot.add("天气统计", x_axis, _yaxis)

  9. boxplot.render

折线图-Line

  1. from pyecharts import Line

  2. line = Line("折线图","一年的降水量与蒸发量")

  3. //is_label_show是设置上方数据是否显示

  4. line.add("降水量", columns, data1, is_label_show=True)

  5. line.add("蒸发量", columns, data2, is_label_show=True)

  6. line.render

雷达图-Rader

  1. from pyecharts import Radar

  2. radar = Radar("雷达图", "一年的降水量与蒸发量")

  3. //由于雷达图传入的数据得为多维数据,所以这里需要做一下处理

  4. radar_data1 = [[2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]]

  5. radar_data2 = [[2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]]

  6. //设置column的最大值,为了雷达图更为直观,这里的月份最大值设置有所不同

  7. schema = [

  8. ("Jan", 5), ("Feb",10), ("Mar", 10),

  9. ("Apr", 50), ("May", 50), ("Jun", 200),

  10. ("Jul", 200), ("Aug", 200), ("Sep", 50),

  11. ("Oct", 50), ("Nov", 10), ("Dec", 5)

  12. ]

  13. //传入坐标

  14. radar.config(schema)

  15. radar.add("降水量",radar_data1)

  16. //一般默认为同一种颜色,这里为了便于区分,需要设置item的颜色

  17. radar.add("蒸发量",radar_data2,item_color="#1C86EE")

  18. radar.render

散点图-scatter

  1. from pyecharts import Scatter

  2. scatter = Scatter("散点图", "一年的降水量与蒸发量")

  3. //xais_name是设置横坐标名称,这里由于显示问题,还需要将y轴名称与y轴的距离进行设置

  4. scatter.add("降水量与蒸发量的散点分布", data1,data2,xaxis_name="降水量",yaxis_name="蒸发量",

  5. yaxis_name_gap=40)

  6. scatter.render

图表布局 Grid

由于标题与图表是属于两个不同的控件,所以这里必须对下方的图表Line进行标题位置设置,否则会出现标题重叠的bug。

  1. from pyecharts import Grid

  2. //设置折线图标题位置

  3. line = Line("折线图","一年的降水量与蒸发量",title_top="45%")

  4. line.add("降水量", columns, data1, is_label_show=True)

  5. line.add("蒸发量", columns, data2, is_label_show=True)

  6. grid = Grid

  7. //设置两个图表的相对位置

  8. grid.add(bar, grid_bottom="60%")

  9. grid.add(line, grid_top="60%")

  10. grid.render

两图结合 Overlap

  1. from pyecharts import Overlap

  2. overlap = Overlap

  3. bar = Bar("柱状图-折线图合并", "一年的降水量与蒸发量")

  4. bar.add("降水量", columns, data1, mark_point=["max", "min"])

  5. bar.add("蒸发量", columns, data2, mark_point=["max", "min"])

  6. overlap.add(bar)

  7. overlap.add(line)

  8. overlap.render

总结一下使用流程

  1. 导入相关图表包

  2. 进行图表的基础设置,创建图表对象

  3. 利用add方法进行数据输入与图表设置(可以使用printechartsoptions来输出所以可配置项)

  4. 利用render方法来进行图表保存

pyecharts还有许多好玩的3D图表和地图图表,个人觉得地图图表是最好玩的,各位有兴趣可以去pyecharts的使用手册查看,有中文版的非常方便:pyecharts

原文:挖掘之家,http://120.79.254.53

回复下方「关键词」,获取优质资源

回复关键词「 pybook03」,立即获取主页君与小伙伴一起翻译的《Think Python 2e》电子版

回复关键词「pybooks02」,立即获取 O'Reilly 出版社推出的免费 Python 相关电子书合集

回复关键词「书单02」,立即获取主页君整理的 10 本 Python 入门书的电子版

题图:pexels,CC0 授权。

相关推荐

Java 泛型大揭秘:类型参数、通配符与最佳实践

引言在编程世界中,代码的可重用性和可维护性是至关重要的。为了实现这些目标,Java5引入了一种名为泛型(Generics)的强大功能。本文将详细介绍Java泛型的概念、优势和局限性,以及如何在...

K8s 的标签与选择器:流畅运维的秘诀

在Kubernetes的世界里,**标签(Label)和选择器(Selector)**并不是最炫酷的技术,但却是贯穿整个集群管理与运维流程的核心机制。正是它们让复杂的资源调度、查询、自动化运维变得...

哈希Hash算法:原理、应用(哈希算法 知乎)

原作者:Linux教程,原文地址:「链接」什么是哈希算法?哈希算法(HashAlgorithm),又称为散列算法或杂凑算法,是一种将任意长度的数据输入转换为固定长度输出值的数学函数。其输出结果通常被...

C#学习:基于LLM的简历评估程序(c# 简历)

前言在pocketflow的例子中看到了一个基于LLM的简历评估程序的例子,感觉还挺好玩的,为了练习一下C#,我最近使用C#重写了一个。准备不同的简历:image-20250528183949844查...

55顺位,砍41+14+3!季后赛也成得分王,难道他也是一名球星?

雷霆队最不可思议的新星:一个55号秀的疯狂逆袭!你是不是也觉得NBA最底层的55号秀,就只能当饮水机管理员?今年的55号秀阿龙·威金斯恐怕要打破你的认知了!常规赛阶段,这位二轮秀就像开了窍的天才,直接...

5分钟读懂C#字典对象(c# 字典获取值)

什么是字典对象在C#中,使用Dictionary类来管理由键值对组成的集合,这类集合被称为字典。字典最大的特点就是能够根据键来快速查找集合中的值,其键的定义不能重复,具有唯一性,相当于数组索引值,字典...

c#窗体传值(c# 跨窗体传递数据)

在WinForm编程中我们经常需要进行俩个窗体间的传值。下面我给出了两种方法,来实现传值一、在输入数据的界面中定义一个属性,供接受数据的窗体使用1、子窗体usingSystem;usingSyst...

C#入门篇章—委托(c#委托的理解)

C#委托1.委托的定义和使用委托的作用:如果要把方法作为函数来进行传递的话,就要用到委托。委托是一个类型,这个类型可以赋值一个方法的引用。C#的委托通过delegate关键字来声明。声明委托的...

C#.NET in、out、ref详解(c#.net framework)

简介在C#中,in、ref和out是用于修改方法参数传递方式的关键字,它们决定了参数是按值传递还是按引用传递,以及参数是否必须在传递前初始化。基本语义对比修饰符传递方式可读写性必须初始化调用...

C#广义表(广义表headtail)

在C#中,广义表(GeneralizedList)是一种特殊的数据结构,它是线性表的推广。广义表可以包含单个元素(称为原子),也可以包含另一个广义表(称为子表)。以下是一个简单的C#广义表示例代...

「C#.NET 拾遗补漏」04:你必须知道的反射

阅读本文大概需要3分钟。通常,反射用于动态获取对象的类型、属性和方法等信息。今天带你玩转反射,来汇总一下反射的各种常见操作,捡漏看看有没有你不知道的。获取类型的成员Type类的GetMembe...

C#启动外部程序的问题(c#怎么启动)

IT&OT的深度融合是智能制造的基石。本公众号将聚焦于PLC编程与上位机开发。除理论知识外,也会结合我们团队在开发过程中遇到的具体问题介绍一些项目经验。在使用C#开发上位机时,有时会需要启动外部的一些...

全网最狠C#面试拷问:这20道题没答出来,别说你懂.NET!

在竞争激烈的C#开发岗位求职过程中,面试是必经的一道关卡。而一场高质量的面试,不仅能筛选出真正掌握C#和.NET技术精髓的人才,也能让求职者对自身技术水平有更清晰的认知。今天,就为大家精心准备了20道...

C#匿名方法(c#匿名方法与匿名类)

C#中的匿名方法是一种没有名称只有主体的方法,它提供了一种传递代码块作为委托参数的技术。以下是关于C#匿名方法的一些重要特点和用法:特点省略参数列表:使用匿名方法可省略参数列表,这意味着匿名方法...

C# Windows窗体(.Net Framework)知识总结

Windows窗体可大致分为Form窗体和MDI窗体,Form窗体没什么好细说的,知识点总结都在思维导图里面了,下文将围绕MDI窗体来讲述。MDI(MultipleDocumentInterfac...