「博文精选」基于FPGA的图像FFT滤波处理
bigegpt 2024-10-21 03:44 3 浏览
1关于傅里叶变换
关于傅里叶变换,这么一个神奇的变换,其基本原理和应用在教科书、网络上漫天飞舞,这里就不赘述了,以免有凑字数的嫌疑。前面的例子我们已经使用Matlab和Vivado的FFT IP核进行了初步的验证,掌握的FFT/IFFT IP核的脾气,那么接下来我们要玩点真的了,基于我们STAR/SF-AT7板采集到的MT9V034图像,我们要进行每个行的FFT和IFFT变换,当然,生成的FFT结果我们可以进行必要的滤波,然后再进行IFFT查看滤波效果。
2基于Matlab的FFT滤波
使用at7_img_ex06\matlab文件夹下的Matlab源码image_1D_fft_ifft.m或L1024_of_image_1D_fft_ifft.m(将640个点扩展为1024个点进行FFT变换,扩展的点以0填充,模拟FPGA的FFT IP核实际工作状况),对测试图像test进行FFT变换,进行必要的滤波,然后IFFT逆变换。
测试图像为彩色图像,原始图像如下。
首先进行彩色转灰度的变换,灰度图像如下。
提取出其中1行进行FFT变换后的图像频谱如下。很明显,大部分高频分量集中在前面几个点,而后面的点几乎频率都很小。
放大频谱图,看到细节如下。这里绘制了一条取值为300的直线,有将近50%的频谱集中在这条线以下。若是做图像压缩,其实我们可以把这些低频分量忽略了,那么数据量可能会大大降低,当然了,副作用是图像可能会有一定程度的失真,有失必有得嘛。滤除这些低频分量,也会使图像更锐一些。话说做FFT变换的目的可远不止这些,在一些特殊的应用场景中,我们总是希望从原始图像中提取出一些和应用直接相关的特征信息,那么做了FFT后的图像常常非常有益于这些操作。为了演示,这里我们的代码里面就将这些低于300的点都滤除,即取0。
从频谱图上看,如图所示,右侧的滤波后明显图像偏黑(很多值取0了)了。
我们重新把原图放到这里,和FFT滤波并IFFT以后的图像做比对,图像整体仍然保持不变,但是查看细节,可以发现处理后的图像明显锐了一些。
Matlab源码如下:
clc;clear `all;close all;
IMAGE_WIDTH = 640;
IMAGE_HIGHT = 480;
%load origin image
%I = imread('Lena_gray_niose.bmp');
I = imread('test.bmp');
I = rgb2gray(I);
%fclose(fid1);
%% output image data in hex file
raw_image = reshape(I, IMAGE_HIGHT, IMAGE_WIDTH);
raw_image = raw_image';
fid2 = fopen('image_in_hex.txt', 'wt');
fprintf(fid2, '%04x\n', raw_image);
fid2 = fclose(fid2);
%show origin image
figure,imshow(I);
title('Original image');
%1D fft base on every image line
II = zeros(IMAGE_HIGHT,1024);
J = zeros(IMAGE_HIGHT,1024);
for i = 1:IMAGE_HIGHT
for j = 1:IMAGE_WIDTH
II(i,j) = I(i,j);
end
J(i,:) = fft(II(i,:));%fft(I(i,:));
end
%show 1 linefft result
t1 = (0:IMAGE_WIDTH); % Time vector
line = ones(IMAGE_WIDTH) * 200;
figure;
plot(t1(1:IMAGE_WIDTH),abs(J(50,1:IMAGE_WIDTH)),t1(1:IMAGE_WIDTH),line(1:IMAGE_WIDTH))
title(['1 line image in the Frequency Domain'])
%show fft of origin image
figure,imshow(log(abs(J)),);
title('1D fft image base on every image line');
%colormap(jet(64)),colorbar;
%fftfiter
J(abs(J) < 300) = 0;
%J(abs(J) > 1000) = 1000;
%show fft of fft filter image
figure,imshow(log(abs(J)),);
title('1D fft image after filter');
%1D ifft base on every image line
K = zeros(IMAGE_HIGHT,1024);
for i = 1:IMAGE_HIGHT
K(i,:) = real(ifft(J(i,:)));
end
KK = zeros(IMAGE_HIGHT,IMAGE_WIDTH);
for i = 1:IMAGE_HIGHT
for j = 1:IMAGE_WIDTH
KK(i,j) = K(i,j);
end
end
%show ifft image
figure,imshow(KK,[])
title('1D ifft image');
3FPGA仿真
在Sources面板中,展开Simulation Sources à sim_1,将sim_fft.v文件设置为top module。同样是对前面的测试图像,经过FFT和IFFT变换后存储在image_view0.txt文本中(仿真测试结果位于at7_img_ex06\at7.sim\sim_1\behav文件夹下)。为了确认FFT和IFFT IP核运算的精度和效果,这里没有做任何的滤波处理。
使用draw_image_from_FPGA_result.m脚本(at7_img_ex06\matlab文件夹下)导入image_view0.txt文本的图像,和原始图像比对如下所示。看到图像几乎没有任何失真。
4 基于FPGA的图像平滑处理
工程文件夹at7_img_ex06\zstar.srcs\sources_1\new下的image_fft_filter.v模块以及3个子模块image_fft_controller.v、image_filter.v和image_ifft_controller.v实现了图像的FFT变换、滤波和IFFT变换处理。FPGA设计的功能框图如下。
image_fft_controller.v模块例化FFT IP核,将采集的图像留以行为单位输入到FFT IP核,输出FFT频域数据。
image_filter.v模块对FFT频域数据计算绝对值并进行必要的滤波处理,假设FFT结果的实部值为a,虚部值为b,那么其绝对值abs =sqrt(a^2+b^2)。如下代码,注释部分可以滤除低频分量,当前例程中为了验证FFT和IFFT变换后精度没有损失,未作滤波。
always @(posedgeclk or negedgerst_n)
if(!rst_n) begin
o_image_filter_data_image<= 20'd0;
o_image_filter_data_real<= 20'd0;
end
/*else if(sqrt_fft[19:0] < 20'd300) begin //此处可以做必要的高频或低频滤波处理
o_image_filter_data_image<= 20'd0;
o_image_filter_data_real<= 20'd0;
end*/
else begin
o_image_filter_data_image<= r_image_fft_data_image[TOTAL_LATENCY-1];
o_image_filter_data_real<= r_image_fft_data_real[TOTAL_LATENCY-1];
end
image_ifft_controller.v模块将滤波处理后的FFT结果进行IFFT变换,图像转回时域值,供后续模块缓存DDR3并显示。
“
”
相关推荐
- Java 泛型大揭秘:类型参数、通配符与最佳实践
-
引言在编程世界中,代码的可重用性和可维护性是至关重要的。为了实现这些目标,Java5引入了一种名为泛型(Generics)的强大功能。本文将详细介绍Java泛型的概念、优势和局限性,以及如何在...
- K8s 的标签与选择器:流畅运维的秘诀
-
在Kubernetes的世界里,**标签(Label)和选择器(Selector)**并不是最炫酷的技术,但却是贯穿整个集群管理与运维流程的核心机制。正是它们让复杂的资源调度、查询、自动化运维变得...
- 哈希Hash算法:原理、应用(哈希算法 知乎)
-
原作者:Linux教程,原文地址:「链接」什么是哈希算法?哈希算法(HashAlgorithm),又称为散列算法或杂凑算法,是一种将任意长度的数据输入转换为固定长度输出值的数学函数。其输出结果通常被...
- C#学习:基于LLM的简历评估程序(c# 简历)
-
前言在pocketflow的例子中看到了一个基于LLM的简历评估程序的例子,感觉还挺好玩的,为了练习一下C#,我最近使用C#重写了一个。准备不同的简历:image-20250528183949844查...
- 55顺位,砍41+14+3!季后赛也成得分王,难道他也是一名球星?
-
雷霆队最不可思议的新星:一个55号秀的疯狂逆袭!你是不是也觉得NBA最底层的55号秀,就只能当饮水机管理员?今年的55号秀阿龙·威金斯恐怕要打破你的认知了!常规赛阶段,这位二轮秀就像开了窍的天才,直接...
- 5分钟读懂C#字典对象(c# 字典获取值)
-
什么是字典对象在C#中,使用Dictionary类来管理由键值对组成的集合,这类集合被称为字典。字典最大的特点就是能够根据键来快速查找集合中的值,其键的定义不能重复,具有唯一性,相当于数组索引值,字典...
- c#窗体传值(c# 跨窗体传递数据)
-
在WinForm编程中我们经常需要进行俩个窗体间的传值。下面我给出了两种方法,来实现传值一、在输入数据的界面中定义一个属性,供接受数据的窗体使用1、子窗体usingSystem;usingSyst...
- C#入门篇章—委托(c#委托的理解)
-
C#委托1.委托的定义和使用委托的作用:如果要把方法作为函数来进行传递的话,就要用到委托。委托是一个类型,这个类型可以赋值一个方法的引用。C#的委托通过delegate关键字来声明。声明委托的...
- C#.NET in、out、ref详解(c#.net framework)
-
简介在C#中,in、ref和out是用于修改方法参数传递方式的关键字,它们决定了参数是按值传递还是按引用传递,以及参数是否必须在传递前初始化。基本语义对比修饰符传递方式可读写性必须初始化调用...
- C#广义表(广义表headtail)
-
在C#中,广义表(GeneralizedList)是一种特殊的数据结构,它是线性表的推广。广义表可以包含单个元素(称为原子),也可以包含另一个广义表(称为子表)。以下是一个简单的C#广义表示例代...
- 「C#.NET 拾遗补漏」04:你必须知道的反射
-
阅读本文大概需要3分钟。通常,反射用于动态获取对象的类型、属性和方法等信息。今天带你玩转反射,来汇总一下反射的各种常见操作,捡漏看看有没有你不知道的。获取类型的成员Type类的GetMembe...
- C#启动外部程序的问题(c#怎么启动)
-
IT&OT的深度融合是智能制造的基石。本公众号将聚焦于PLC编程与上位机开发。除理论知识外,也会结合我们团队在开发过程中遇到的具体问题介绍一些项目经验。在使用C#开发上位机时,有时会需要启动外部的一些...
- 全网最狠C#面试拷问:这20道题没答出来,别说你懂.NET!
-
在竞争激烈的C#开发岗位求职过程中,面试是必经的一道关卡。而一场高质量的面试,不仅能筛选出真正掌握C#和.NET技术精髓的人才,也能让求职者对自身技术水平有更清晰的认知。今天,就为大家精心准备了20道...
- C#匿名方法(c#匿名方法与匿名类)
-
C#中的匿名方法是一种没有名称只有主体的方法,它提供了一种传递代码块作为委托参数的技术。以下是关于C#匿名方法的一些重要特点和用法:特点省略参数列表:使用匿名方法可省略参数列表,这意味着匿名方法...
- C# Windows窗体(.Net Framework)知识总结
-
Windows窗体可大致分为Form窗体和MDI窗体,Form窗体没什么好细说的,知识点总结都在思维导图里面了,下文将围绕MDI窗体来讲述。MDI(MultipleDocumentInterfac...
- 一周热门
- 最近发表
- 标签列表
-
- mybatiscollection (79)
- mqtt服务器 (88)
- keyerror (78)
- c#map (65)
- resize函数 (64)
- xftp6 (83)
- bt搜索 (75)
- c#var (76)
- mybatis大于等于 (64)
- xcode-select (66)
- mysql授权 (74)
- 下载测试 (70)
- linuxlink (65)
- pythonwget (67)
- androidinclude (65)
- logstashinput (65)
- hadoop端口 (65)
- vue阻止冒泡 (67)
- oracle时间戳转换日期 (64)
- jquery跨域 (68)
- php写入文件 (73)
- kafkatools (66)
- mysql导出数据库 (66)
- jquery鼠标移入移出 (71)
- 取小数点后两位的函数 (73)