MATLAB的lsqcurvefit函数拟合非线性式子中的未知参数
bigegpt 2024-10-28 12:47 78 浏览
往往在实际问题中都存在exp(x)、lnx、sinx等多种函数组合的非线性经验公式。对此我们就可以通过lsqcurvefit函数进行求解,该函数的方法被称为非线性最小二乘,损失函数一样,只不过类似于优化算法,给定参数初始值,然后优化参数,非线性最小二乘模型如下,即目标函数。
lsqcurvefit函数拟合格式
格式
x = lsqcurvefit(fun,a0,xdata,ydata)
x = lsqcurvefit(fun,a0,xdata,ydata,lb,ub)
x = lsqcurvefit(fun,a0,xdata,ydata,lb,ub,options)
[x,resnorm] = lsqcurvefit(…)
[x,resnorm,residual] = lsqcurvefit(…)
[x,resnorm,residual,exitflag] = lsqcurvefit(…)
[x,resnorm,residual,exitflag,output] = lsqcurvefit(…)
[x,resnorm,residual,exitflag,output,lambda]= lsqcurvefit(…)
[x,resnorm,residual,exitflag,output,lambda,jacobian] =lsqcurvefit(…)
参数说明:
在lsqcurvefit函数中,有trust-region-reflective和levenberg-marquardt两种算法可以求解参数,
其中默认采用信赖域(trust-region-reflective)算法。
a0为初始解向量, 因为求解是一个迭代的过程,需要先给定一个初始参数,再逐步修改参数的过程。
所以要对a0初始化,一般而言,可以随机,但是经验上取与解接近的值会提高计算速度。
xdata,ydata为满足关系ydata=F(a, xdata)的数据;
lb、ub为解向量的下界和上界lb≤a≤ub,若没有指定界,则lb=[ ],ub=[ ];
options为指定的优化参数;
fun为待拟合函数,计算x处拟合函数值,其定义为 function F = myfun(a,xdata)
resnorm=sum ((fun(a,xdata)-ydata).^2),即在a处残差的平方和;
residual=fun(a,xdata)-ydata,即在x处的残差;
exitflag为终止迭代的条件;
output为输出的优化信息;
lambda为解x处的Lagrange乘子;
jacobian为解x处拟合函数fun的jacobian矩阵。
f:符号函数句柄,如果是以m文件的形式调用的时候,别忘记加@.这里需要注意,f函数的返回值是和y
匹对的,即拟合参数的标准是(f-y)^2取最小值,具体看下面的例子
实例1
程序
clc;clear%清除变量
y=[100.3 101.1 102.1 101.1 101.6 104.4 102.5 102.1 103.9 103.9];
xdata=1:length(y);
a0=[1,3,7,5,7]; %初始估计值,随便写 这个是4次拟合 ,具体表达式可以随便改
options=optimset('Tolfun',1e-15); %方法设定
for i=1:1000
x=lsqcurvefit(@fun1,a0,xdata,y,[],[],options); %确定待定系数
a0=x;%以计算出的x为初值,循环迭代1000次
end
disp(x);%输出系数
yy = fun1(x,xdata);%利用已经拟合好的模型预测y值
len=[1:20];
len1 = fun1(x,len);%预测走势
result=[y;yy]%实际值与预测值
error=abs(y-yy);%误差
bfb=error./y%相对误差
errorsum=sum(error)/length(y)%平均误差
bfbsum=sum(bfb)/length(y)%平均相对误差
figure(1)
plot(xdata,y,'r-',xdata,yy,'b-')
legend('实际值','拟合值')
title('实际值与预测值的比较','fontsize',15)
ylabel('Y','fontsize',15)
xlabel('X','fontsize',15)
%axis([1 10 1 200]);%坐标范围
%set(gca,‘xtick’,[1 2 …10]);%X轴设定
%set(gca,‘ytick’,[1 20 40 …200]);%Y轴设定
figure(2)
plot(len,len1,'r-')
legend('拟合曲线')
title('拟合曲线图','fontsize',15)
ylabel('Y','fontsize',15)
xlabel('X','fontsize',15)
function y = fun1(a, x);
y = a(1) + a(2)*x + a(3)*x.^2 + a(4)*x.^3 + a(5)*x.^4;
end
运行结果
实例2
程序
clc;
clear all;
close all;
xdata = ...
[0.9 1.5 13.8 19.8 24.1 28.2 35.2 60.3 74.6 81.3];
ydata = ...
[455.2 428.6 124.1 67.3 43.2 28.1 13.1 -0.4 -1.3 -1.5];
fun = @(x,xdata)x(1)*exp(x(2)*xdata);
x0 = [100,-1];
x = lsqcurvefit(fun,x0,xdata,ydata)
times = linspace(xdata(1),xdata(end));
plot(xdata,ydata,'ko',times,fun(x,times),'b-')
legend('Data','Fitted exponential')
title('Data and Fitted Curve')
运行结果
实例3
用MATLAB程序拟合Logistic函数
程序
clear
clc
xdata=0:10:180;
ydata=[0 0 0.45 2.7 5.4 5.7 10.5 10.8 9.6 12.15 16.65 18.15 19.05 28.2 29.1 21.1 19.95 22.05 25.2];
%% 指定非线性函数拟合曲线
X0=[100 10 0.2];
[parameter,resnorm]=lsqcurvefit(@fun,X0,xdata,ydata); %指定拟合曲线
A=parameter(1);
B=parameter(2);
C=parameter(3);
fprintf('拟合Logistic曲线的参数A为:%.8f,B为:%.8f,C为:%.8f', A, B, C);
fit_y=fun(parameter,xdata);
figure(1)
plot(xdata, ydata, 'r*');
hold on
plot(xdata,fit_y,'b-');
xlabel('t');
ylabel('y');
legend('观测数据点','拟合曲线', 'Location', 'northwest');
saveas(gcf,sprintf('Logistic曲线.jpg'),'bmp');
%% Logistic函数
% y=A/(1+B*exp(-C*t))
function f=fun(X,t)
f=X(1)./(1+X(2).*exp(-X(3).*(t)));
end
运行结果
相关推荐
- AI「自我复制」能力曝光,RepliBench警示:大模型正在学会伪造身份
-
科幻中AI自我复制失控场景,正成为现实世界严肃的研究课题。英国AISI推出RepliBench基准,分解并评估AI自主复制所需的四大核心能力。测试显示,当前AI尚不具备完全自主复制能力,但在获取资源...
- 【Python第三方库安装】介绍8种情况,这里最全看这里就够了!
-
**本图文作品主要解决CMD或pycharm终端下载安装第三方库可能出错的问题**本作品介绍了8种安装方法,这里最全的python第三方库安装教程,简单易上手,满满干货!希望大家能愉快地写代码,而不要...
- pyvips,一个神奇的 Python 库!(pythonvip视频)
-
大家好,今天为大家分享一个神奇的Python库-pyvips。在图像处理领域,高效和快速的图像处理工具对于开发者来说至关重要。pyvips是一个强大的Python库,基于libvips...
- mac 安装tesseract、pytesseract以及简单使用
-
一.tesseract-OCR的介绍1.tesseract-OCR是一个开源的OCR引擎,能识别100多种语言,专门用于对图片文字进行识别,并获取文本。但是它的缺点是对手写的识别能力比较差。2.用te...
- 实测o3/o4-mini:3分钟解决欧拉问题,OpenAI最强模型名副其实!
-
号称“OpenAI迄今为止最强模型”,o3/o4-mini真实能力究竟如何?就在发布后的几小时内,网友们的第一波实测已新鲜出炉。最强推理模型o3,即使遇上首位全职提示词工程师RileyGoodsid...
- 使用Python将图片转换为字符画并保存到文件
-
字符画(ASCIIArt)是将图片转换为由字符组成的艺术作品。利用Python,我们可以轻松实现图片转字符画的功能。本教程将带你一步步实现这个功能,并详细解释每一步的代码和实现原理。环境准备首先,你...
- 5分钟-python包管理器pip安装(python pip安装包)
-
pip是一个现代的,通用、普遍的Python包管理工具。提供了对Python包的查找、下载、安装、卸载的功能,是Python开发的基础。第一步:PC端打开网址:选择gz后缀的文件下载第二步:...
- 网络问题快速排查,你也能当好自己家的网络攻城狮
-
前面写了一篇关于网络基础和常见故障排查的,只列举了工具。没具体排查方式。这篇重点把几个常用工具的组合讲解一下。先有请今天的主角:nslookup及dig,traceroute,httping,teln...
- 终于把TCP/IP 协议讲的明明白白了,再也不怕被问三次握手了
-
文:涤生_Woo下周就开始和大家成体系的讲hadoop了,里面的每一个模块的技术细节我都会涉及到,希望大家会喜欢。当然了你也可以评论或者留言自己喜欢的技术,还是那句话,希望咱们一起进步。今天周五,讲讲...
- 记一次工控触摸屏故障的处理(工控触摸屏维修)
-
先说明一下,虽然我是自动化专业毕业,但已经很多年不从事现场一线的工控工作了。但自己在单位做的工作也牵涉到信息化与自动化的整合,所以平时也略有关注。上一周一个朋友接到一个活,一家光伏企业用于启动机组的触...
- 19、90秒快速“读懂”路由、交换命令行基础
-
命令行视图VRP分层的命令结构定义了很多命令行视图,每条命令只能在特定的视图中执行。本例介绍了常见的命令行视图。每个命令都注册在一个或多个命令视图下,用户只有先进入这个命令所在的视图,才能运行相应的命...
- 摄像头没图像的几个检查方法(摄像头没图像怎么修复)
-
背景描述:安防监控项目上,用户的摄像头运行了一段时间有部分摄像头不能进行预览,需要针对不能预览的摄像头进行排查,下面列出几个常见的排查方法。问题解决:一般情况为网络、供电、设备配置等情况。一,网络检查...
- 小谈:必需脂肪酸(必需脂肪酸主要包括)
-
必需脂肪酸是指机体生命活动必不可少,但机体自身又不能合成,必需由食物供给的多不饱和脂肪酸(PUFA)。必需脂肪酸主要包括两种,一种是ω-3系列的α-亚麻酸(18:3),一种是ω-6系列的亚油酸(18:...
- 期刊推荐:15本sci四区易发表的机械类期刊
-
虽然,Sci四区期刊相比收录在sci一区、二区、三区的期刊来说要求不是那么高,投稿起来也相对容易一些。但,sci四区所收录的期刊中每本期刊的投稿难易程度也是不一样的。为方便大家投稿,本文给大家推荐...
- be sick of 用法考察(be in lack of的用法)
-
besick表示病了,做谓语.本身是形容词,有多种意思.最通常的是:生病,恶心,呕吐,不适,晕,厌烦,无法忍受asickchild生病的孩子Hermother'sverysi...
- 一周热门
- 最近发表
-
- AI「自我复制」能力曝光,RepliBench警示:大模型正在学会伪造身份
- 【Python第三方库安装】介绍8种情况,这里最全看这里就够了!
- pyvips,一个神奇的 Python 库!(pythonvip视频)
- mac 安装tesseract、pytesseract以及简单使用
- 实测o3/o4-mini:3分钟解决欧拉问题,OpenAI最强模型名副其实!
- 使用Python将图片转换为字符画并保存到文件
- 5分钟-python包管理器pip安装(python pip安装包)
- 网络问题快速排查,你也能当好自己家的网络攻城狮
- 终于把TCP/IP 协议讲的明明白白了,再也不怕被问三次握手了
- 记一次工控触摸屏故障的处理(工控触摸屏维修)
- 标签列表
-
- mybatiscollection (79)
- mqtt服务器 (88)
- keyerror (78)
- c#map (65)
- resize函数 (64)
- xftp6 (83)
- bt搜索 (75)
- c#var (76)
- mybatis大于等于 (64)
- xcode-select (66)
- mysql授权 (74)
- 下载测试 (70)
- linuxlink (65)
- pythonwget (67)
- androidinclude (65)
- logstashinput (65)
- hadoop端口 (65)
- vue阻止冒泡 (67)
- oracle时间戳转换日期 (64)
- jquery跨域 (68)
- php写入文件 (73)
- kafkatools (66)
- mysql导出数据库 (66)
- jquery鼠标移入移出 (71)
- 取小数点后两位的函数 (73)