百度360必应搜狗淘宝本站头条
当前位置:网站首页 > 热门文章 > 正文

Python大屏看板最全教程之Pyecharts图表

bigegpt 2024-08-06 12:05 3 浏览

阅读本文大约需要3分钟

主要内容:数据分析。

适用人群:Python初学者,数据分析师,或有志从事数据分析工作的人员。

准备软件:Anaconda(Spyder:代码编译)、Navicat Premium 12(数据库)。

从事IT项目管理这么多年,基本上已经遗弃编程技能,但从2019年开始接触Python,深深地迷上了这门语言,像硬件集成、数据分析,我都会用python来写。晓风想通过本文,让初学者们学会以下内容:

1、Pyecharts图表;

2、连接数据库;

3、大屏看板-监控中心。

今天,我们详细地介绍1、Pyecharts图表,保证大家能够举一反三。

我们还可以用Matplotlib,Seaborn等进行数据分析,但今天晓风主要介绍Pyecharts(够用),以下两个地址大家可以收藏下(有用)。

Pyecharts的链接:https://pyecharts.org/#/zh-cn/

Pyecharts的图示:https://gallery.pyecharts.org/#/README

Pyecharts主要有以下几种图表:

1、地图

2、仪表盘

3、柱状图

4、折线图

5、饼图

6、表格

7、水球图

8、箱型图

9、日历图

10、漏斗图

11、关系图

12、桑基图

13、散点图

14、词云图

特意列了这些图表,是为了告诉大家,这些图表比较普遍,并且在Pyecharts都有现成代码可以复制,那么接下来,晓风以柱状图为例,大家可以举一反三来绘制其他图表。

1、打开Pyecharts的柱状图图示链接:https://gallery.pyecharts.org/#/Bar/bar_base

2、打开Anaconda - Spyder - 新建一个文件,将以下代码复制到spyder,

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker


c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values())
    .add_yaxis("商家B", Faker.values())
    .set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="我是副标题"))
    .render("bar_base.html")
)

初次引用库,需要先到Anaconda - Environments安装,比如安装pyecharts库:

3、保存-运行程序,保存文件到自己指定的文件夹下

4、要查看柱状图效果,可能要去自己保存的文件夹下找到“bar_base.html”,打开查看效果

5、需要修改柱状图的内容,我们先了解下图表的各区域表示

我们需要修改哪部分,比如想要修改标题,标题的配置项是LegendOpts: 图例配置项

打开pyecharts的链接:https://pyecharts.org/#/zh-cn/

找到配置项 - 全局配置项 - LegendOpts: 图例配置项

class LegendOpts(
    # 图例的类型。可选值:
    # 'plain':普通图例。缺省就是普通图例。
    # 'scroll':可滚动翻页的图例。当图例数量较多时可以使用。
    type_: Optional[str] = None,
    # 图例选择的模式,控制是否可以通过点击图例改变系列的显示状态。默认开启图例选择,可以设成 false 关闭
    # 除此之外也可以设成 'single' 或者 'multiple' 使用单选或者多选模式。
    selected_mode: Union[str, bool, None] = None,
    # 是否显示图例组件
    is_show: bool = True,
    # 图例组件离容器左侧的距离。
    # left 的值可以是像 20 这样的具体像素值,可以是像 '20%' 这样相对于容器高宽的百分比,
    # 也可以是 'left', 'center', 'right'。
    # 如果 left 的值为'left', 'center', 'right',组件会根据相应的位置自动对齐。
    pos_left: Union[str, Numeric, None] = None,
    # 图例组件离容器右侧的距离。
    # right 的值可以是像 20 这样的具体像素值,可以是像 '20%' 这样相对于容器高宽的百分比。
    pos_right: Union[str, Numeric, None] = None,
    # 图例组件离容器上侧的距离。
    # top 的值可以是像 20 这样的具体像素值,可以是像 '20%' 这样相对于容器高宽的百分比,
    # 也可以是 'top', 'middle', 'bottom'。
    # 如果 top 的值为'top', 'middle', 'bottom',组件会根据相应的位置自动对齐。
    pos_top: Union[str, Numeric, None] = None,
    # 图例组件离容器下侧的距离。
    # bottom 的值可以是像 20 这样的具体像素值,可以是像 '20%' 这样相对于容器高宽的百分比。
    pos_bottom: Union[str, Numeric, None] = None,
    # 图例列表的布局朝向。可选:'horizontal', 'vertical'
    orient: Optional[str] = None,
    # 图例标记和文本的对齐。默认自动(auto)
    # 根据组件的位置和 orient 决定
    # 当组件的 left 值为 'right' 以及纵向布局(orient 为 'vertical')的时候为右对齐,即为 'right'。
    # 可选参数: `auto`, `left`, `right`
    align: Optional[str] = None,
    # 图例内边距,单位px,默认各方向内边距为5
    padding: int = 5,
    # 图例每项之间的间隔。横向布局时为水平间隔,纵向布局时为纵向间隔。
    # 默认间隔为 10
    item_gap: int = 10,
    # 图例标记的图形宽度。默认宽度为 25
    item_width: int = 25,
    # 图例标记的图形高度。默认高度为 14
    item_height: int = 14,
    # 图例关闭时的颜色。默认是 #ccc
    inactive_color: Optional[str] = None,
    # 图例组件字体样式,参考 `series_options.TextStyleOpts`
    textstyle_opts: Union[TextStyleOpts, dict, None] = None,
    # 图例项的 icon。
    # ECharts 提供的标记类型包括 'circle', 'rect', 'roundRect', 'triangle', 'diamond', 'pin', 'arrow', 'none'
    # 可以通过 'image://url' 设置为图片,其中 URL 为图片的链接,或者 dataURI。
    # 可以通过 'path://' 将图标设置为任意的矢量路径。
    legend_icon: Optional[str] = None,
)

比如我不想显示这个图例,那么is_show=False,显示位置左对齐,那么pos_left="left"。应该修改代码如下:

from pyecharts import options as opts
from pyecharts.charts import Bar
from pyecharts.faker import Faker


c = (
    Bar()
    .add_xaxis(Faker.choose())
    .add_yaxis("商家A", Faker.values())
    .add_yaxis("商家B", Faker.values())
    .set_global_opts(title_opts=opts.TitleOpts(title="Bar-基本示例", subtitle="我是副标题"),
                     legend_opts=opts.LegendOpts(is_show=False)
    ) 
    .render("bar_base.html")
)

学习到了这里,我们就可以举一反三,所有图表的编写方法是一致的。好了,大家赶紧动起来,有空就把所有图表都操作一遍。今天的内容就到这里,接下来会教大家怎么连接数据库,将动态的数据呈现出来,敬请期待。愿我们一起成长!

如果觉得有用的话,请帮忙点赞、关注、收藏哦,感谢您的支持!

相关推荐

机器学习分类模型评估(三)-F值(F-Measure)、AUC、P-R曲线

概述上二篇文章分别讲述了准确率(accuracy)、精确率(Precision)、查准类、召回率(Recall)、查全率、ROC曲线,本文讲述机器学习分类模型评估中的F值(F-Measure)、AUC...

SPSS ROC曲线诊断临界值确定

ROC曲线是在临床医学和流行病学研究中一种常用的在诊断试验、预测模型中用于决定最佳临界点的方法。ROC曲线用真阳性率和假阳性率作图得出曲线,其横轴表示假阳性率(1-特异度),纵轴表示真阳性率(灵敏度)...

分类器模型检测--ROC曲线和AUC值

在监督学习建模中有一个重要的模块是模块的检测,就是怎样判断一个模型的好坏?那么常用的的检测的指标有P值、R值、F值、ROC曲线、AUC值等,今天来学习他们都是怎么来的,有什么用处。这里为二分类问题,即...

【Python机器学习系列】建立梯度提升模型预测心脏疾病

这是Python机器学习系列原创文章,我的第204篇原创文章。一、引言对于表格数据,一套完整的机器学习建模流程如下:针对不同的数据集,有些步骤不适用即不需要做,其中橘红色框为必要步骤,由于数据质量较高...

如何Keras自动编码器给极端罕见事件分类

全文共7940字,预计学习时长30分钟或更长本文将以一家造纸厂的生产为例,介绍如何使用自动编码器构建罕见事件分类器。现实生活中罕见事件的数据集:背景1.什么是极端罕见事件?在罕见事件问题中,数据集是...

机器学习分类问题:9个常用的评估指标总结

对机器学习的评估度量是机器学习核心部分,本文总结分类问题常用的metrics分类问题评估指标在这里,将讨论可用于评估分类问题预测的各种性能指标1ConfusionMatrix这是衡量分类问题性能的...

基于R语言的ROC曲线绘制及最佳阈值点(Cutoff)选择

ROC曲线在介绍ROC曲线之前,我们首先需要介绍混淆矩阵(ConfusionMatrix)。在统计分类模型的评估过程中分别统计分类模型归错类,归对类的观测值个数,然后把结果放在一个表里展示出来的表格...

R数据分析:多分类问题预测模型的ROC做法及解释

有同学做了个多分类的预测模型,结局有三个类别,做的模型包括多分类逻辑回归、随机森林和决策树,多分类逻辑回归是用ROC曲线并报告AUC作为模型评估的,后面两种模型报告了混淆矩阵,审稿人就提出要统一模型评...

SPSS实战:多个指标ROC曲线方向不一致的解决办法汇总(收藏)

在诊断实验和预测模型的临床效能评价中,我们常常用到ROC曲线分析。在SPSS中绘制ROC曲线操作比较简单,但如果将多个指标的ROC曲线绘制在同一个图中,有时候会碰到有些指标的ROC曲线在对角线上面,一...

小果教你快速分析ROC生存曲线图

尔云间一个专门做科研的团队原创小果生信果小伙伴们,大家好呀,很高兴和大家见面,前段时间应小伙伴出的解读ROC曲线图,小伙伴反应很是积极,这不最近小伙伴对于不同年份的ROC曲线图的分析呼声很高,...

生信文章中高频出现、模型评估必备分析——ROC曲线图,怎么看?

尔云间一个专门做科研的团队关注我们做了生信分析,拿到一堆数据,看不懂图怎么办?火山图、热图、散点图、箱线图、瀑布图···这么多类型的图都咋看?风险模型预后评估图、GO-KEGG富集分析图、GSEA...

如何看懂文献里那些图——ROC曲线图

ROC曲线的基本思想是把敏感度和特异性看作一个连续变化的过程,用一条曲线描述诊断系统的性能,其制作原理是在连续变量中不同界值点处计算相对应的灵敏度和特异度,然后以敏感度为纵坐标、1-特异性为横坐标绘制...

超强,必会的机器学习评估指标

大侠幸会,在下全网同名[算法金]0基础转AI上岸,多个算法赛Top[日更万日,让更多人享受智能乐趣]构建机器学习模型的关键步骤是检查其性能,这是通过使用验证指标来完成的。选择正确的验证指...

准确性检验 (ROC曲线)的SPSS操作教程及结果解读

作者/风仕在上一期,我们已经讲完了诊断试验的基础知识,这期开始讲准确性检验(ROC曲线),我们主要从准确性检验(ROC曲线)的介绍、基本概念、绘制原理、统计量、使用条件及案例的SPSS操作演示这几...

SPSS:ROC 曲线为什么反了?

【作者介绍】李志辉,长期从事各类统计软件应用研究,主编或参编SPSS、MINITAB、STATISTICA多个统计软件教材共8本。代表作:电子工业出版社《SPSS常用统计分析教程(SPSS22.0中...