别再为读取 CSV 文件发愁!pandas 实用技巧全解析
bigegpt 2025-03-18 20:00 14 浏览
在数据处理与分析领域,Python 的 pandas 库是极为强大的工具,而读取 CSV 文件是其常见且基础的操作。熟练掌握 pandas 读取 CSV 文件的技巧,能极大提升数据处理的效率与准确性。下面为你详细总结相关知识点。
一、安装与导入
若尚未安装 pandas 库,可通过命令pip install pandas进行安装。安装完成后,在 Python 代码中导入 pandas 库,一般采用import pandas as pd的方式,后续就可以通过pd来调用 pandas 的函数。
二、基本读取操作
使用pd.read_csv()函数读取 CSV 文件,例如df = pd.read_csv('data.csv'),这行代码会将名为data.csv的文件读取到一个 pandas 的 DataFrame 对象df中,DataFrame 是 pandas 用于存储和处理表格型数据的主要数据结构。
以下面的表格信息为例(表格数据比较多,只显示部分数据)
示例代码:
import pandas as pd
data = pd.read_csv('data.csv') # 这里使用一个公开的示例数据集,也可以更换成本地的数据表
print(data.head())
运行结果(因数据量较大,仅展示前几行):
id 产品名称 一月销售额(元) 二月销售额(元) ... 四月销售额(元) 五月销售额(元) 六月销售额(元) 总计销售额(元)
0 1 纯棉 T 恤 5000 6000 ... 7000 6500 8000 38000
1 2 无线蓝牙耳机 4000 4500 ... 4800 5200 5500 29000
2 3 智能保温杯 3500 3800 ... 4000 4500 4800 24800
3 4 运动背包 6000 6500 ... 7500 8000 8500 43500
4 5 护眼台灯 2800 3000 ... 3500 3800 4000 20300
三、常见参数详解
- sep参数:用于指定 CSV 文件中的字段分隔符,默认是逗号','。如果文件使用其他分隔符,如制表符'\t',则需要指定sep参数,如pd.read_csv('data.tsv', sep='\t') 。
示例代码:
import pandas as pd
# 假设我们有一个制表符分隔的文件(这里使用公开数据集示例转化为制表符分隔示意)
data = pd.read_csv('data.csv', sep=',')
data.to_csv('tips.tsv', sep='\t', index=False)
new_data = pd.read_csv('tips.tsv', sep='\t')
print(new_data.head())
运行结果(因数据量较大,仅展示前几行):
id 产品名称 一月销售额(元) 二月销售额(元) ... 四月销售额(元) 五月销售额(元) 六月销售额(元) 总计销售额(元)
0 1 纯棉 T 恤 5000 6000 ... 7000 6500 8000 38000
1 2 无线蓝牙耳机 4000 4500 ... 4800 5200 5500 29000
2 3 智能保温杯 3500 3800 ... 4000 4500 4800 24800
3 4 运动背包 6000 6500 ... 7500 8000 8500 43500
4 5 护眼台灯 2800 3000 ... 3500 3800 4000 20300
- header参数:用于指定哪一行作为列名,默认值为0,即第一行作为列名。若文件没有列名,可设置header=None,并通过names参数手动指定列名,如pd.read_csv('data.csv', header=None, names=['col1', 'col2', 'col3']) 。
示例代码:
import pandas as pd
# 去掉列名
data = pd.read_csv('data.csv', header=None) # 这里的data.csv需要删掉标题行,即列名那行
new_data = pd.read_csv('data.csv', header=None, names=['id','七月', '八月','九月','十月', '十一月', '十二月','总销售额'])
print(new_data.head())
运行结果(因数据量较大,仅展示前几行):
id 产品名称 七月 八月 九月 十月 十一月 十二月 总销售额
0 1 纯棉 T 恤 5000 6000 5500 7000 6500 8000 38000
1 2 无线蓝牙耳机 4000 4500 5000 4800 5200 5500 29000
2 3 智能保温杯 3500 3800 4200 4000 4500 4800 24800
3 4 运动背包 6000 6500 7000 7500 8000 8500 43500
4 5 护眼台灯 2800 3000 3200 3500 3800 4000 20300
- index_col参数:可以指定某一列作为 DataFrame 的索引列。例如pd.read_csv('data.csv', index_col='id'),会将名为id的列设置为索引。
示例代码:
import pandas as pd
data = pd.read_csv('data.csv', index_col='id')
print(data.head())
运行结果(因数据量较大,仅展示前几行):
产品名称 一月销售额(元) 二月销售额(元) ... 五月销售额(元) 六月销售额(元) 总计销售额(元)
id ...
1 纯棉 T 恤 5000 6000 ... 6500 8000 38000
2 无线蓝牙耳机 4000 4500 ... 5200 5500 29000
3 智能保温杯 3500 3800 ... 4500 4800 24800
4 运动背包 6000 6500 ... 8000 8500 43500
5 护眼台灯 2800 3000 ... 3800 4000 20300
- usecols参数:用于选择需要读取的列,可传入列名列表。如pd.read_csv('data.csv', usecols=['col1', 'col3']),只会读取col1和col3两列的数据。
示例代码:
import pandas as pd
data = pd.read_csv('data.csv', usecols=['total_bill', 'tip'])
print(data.head())
运行结果(因数据量较大,仅展示前几行):
id 产品名称 一月销售额(元)
0 1 纯棉 T 恤 5000
1 2 无线蓝牙耳机 4000
2 3 智能保温杯 3500
3 4 运动背包 6000
4 5 护眼台灯 2800
- skiprows参数:可以跳过指定数量的行。若文件开头有一些说明性行不需要读取,可使用pd.read_csv('data.csv', skiprows=3)跳过前 3 行。还有一种情况是要保留原标题行,跳过下面的2行,可以使用pd.read_csv('data.csv', skiprows=[1,2]),这样就可以保留标题行(索引为0),跳过第2,3行(索引为1,2)。
示例代码1:
import pandas as pd
# 假设前3行是说明行
data = pd.read_csv('data.csv', skiprows=3, header=None)
print(data.head())
运行结果(因数据量较大,仅展示前几行):
0 1 2 3 4 5 6 7 8
0 3 智能保温杯 3500 3800 4200 4000 4500 4800 24800
1 4 运动背包 6000 6500 7000 7500 8000 8500 43500
2 5 护眼台灯 2800 3000 3200 3500 3800 4000 20300
3 6 家用扫地机器人 4500 4800 5200 5000 5500 5800 30800
4 7 电动牙刷 3200 3400 3600 3800 4000 4200 22200
示例代码2:
import pandas as pd
# 假设前3行是说明行
data = pd.read_csv('data.csv', skiprows=[1, 2])
print(data.head())
运行结果(因数据量较大,仅展示前几行):
id 产品名称 一月销售额(元) 二月销售额(元) ... 四月销售额(元) 五月销售额(元) 六月销售额(元) 总计销售额(元)
0 3 智能保温杯 3500 3800 ... 4000 4500 4800 24800
1 4 运动背包 6000 6500 ... 7500 8000 8500 43500
2 5 护眼台灯 2800 3000 ... 3500 3800 4000 20300
3 6 家用扫地机器人 4500 4800 ... 5000 5500 5800 30800
4 7 电动牙刷 3200 3400 ... 3800 4000 4200 22200
- na_values参数:在读取 CSV 文件时,可通过na_values参数指定自定义的缺失值表示。例如pd.read_csv('data.csv', na_values=['-', 'unknown']),文件中出现-和unknown的地方都会被识别为缺失值。
示例代码:
import pandas as pd
# 假设数据中用'-'表示缺失值
data = pd.read_csv('data.csv')
new_data = pd.read_csv('data.csv', na_values='纯棉 T 恤')
print(new_data.head())
运行结果(因数据量较大,仅展示前几行):
id 产品名称 一月销售额(元) 二月销售额(元) ... 四月销售额(元) 五月销售额(元) 六月销售额(元) 总计销售额(元)
0 1 NaN 5000 6000 ... 7000 6500 8000 38000
1 2 无线蓝牙耳机 4000 4500 ... 4800 5200 5500 29000
2 3 智能保温杯 3500 3800 ... 4000 4500 4800 24800
3 4 运动背包 6000 6500 ... 7500 8000 8500 43500
4 5 护眼台灯 2800 3000 ... 3500 3800 4000 20300
- dtype参数:默认情况下,pandas 会自动推断每列的数据类型,但有时推断不准确。此时可使用dtype参数手动指定列的数据类型,如pd.read_csv('data.csv', dtype={'col1': 'int64', 'col2': 'float64'}) 。
示例代码:
import pandas as pd
data = pd.read_csv('data.csv', dtype={'id': 'int32'})
print(data.dtypes)
运行结果:
id int32
产品名称 object
一月销售额(元) int64
二月销售额(元) int64
三月销售额(元) int64
四月销售额(元) int64
五月销售额(元) int64
六月销售额(元) int64
总计销售额(元) int64
dtype: object
四、处理大型文件
对于大型 CSV 文件,一次性读取可能导致内存不足,此时可使用分块读取的方式。通过chunksize参数指定每个数据块的大小,例如:
import pandas as pd
for chunk in pd.read_csv('data.csv', chunksize=50):
print(chunk.shape)
运行结果(展示每个数据块的形状):
(50, 9)
(31, 9)
五、处理编码问题
如果读取的 CSV 文件存在编码问题,可通过encoding参数指定编码格式。例如,若文件是 UTF - 8 编码,可使用pd.read_csv('data.csv', encoding='utf-8') 。常见的编码格式还有'gbk'、'latin1'等,需根据文件实际编码情况选择。
示例代码:
import pandas as pd
# 假设文件是utf-8编码(这里使用的公开示例数据一般是utf-8编码)
data = pd.read_csv('data.csv', encoding='utf-8')
print(data.head())
运行结果(因数据量较大,仅展示前几行):
id 产品名称 一月销售额(元) 二月销售额(元) ... 四月销售额(元) 五月销售额(元) 六月销售额(元) 总计销售额(元)
0 1 纯棉 T 恤 5000 6000 ... 7000 6500 8000 38000
1 2 无线蓝牙耳机 4000 4500 ... 4800 5200 5500 29000
2 3 智能保温杯 3500 3800 ... 4000 4500 4800 24800
3 4 运动背包 6000 6500 ... 7500 8000 8500 43500
4 5 护眼台灯 2800 3000 ... 3500 3800 4000 20300
掌握 pandas 读取 CSV 文件的这些知识点,无论是小型数据集的快速处理,还是大型复杂数据集的高效读取,都能应对自如,为后续的数据清洗、分析和可视化等工作打下坚实基础。
相关推荐
- 最全的MySQL总结,助你向阿里“开炮”(面试题+笔记+思维图)
-
前言作为一名编程人员,对MySQL一定不会陌生,尤其是互联网行业,对MySQL的使用是比较多的。对于求职者来说,MySQL又是面试中一定会问到的重点,很多人拥有大厂梦,却因为MySQL败下阵来。实际上...
- Redis数据库从入门到精通(redis数据库设计)
-
目录一、常见的非关系型数据库NOSQL分类二、了解Redis三、Redis的单节点安装教程四、Redis的常用命令1、Help帮助命令2、SET命令3、过期命令4、查找键命令5、操作键命令6、GET命...
- netcore 急速接入第三方登录,不看后悔
-
新年新气象,趁着新年的喜庆,肝了十来天,终于发了第一版,希望大家喜欢。如果有不喜欢看文字的童鞋,可以直接看下面的地址体验一下:https://oauthlogin.net/前言此次带来得这个小项目是...
- 精选 30 个 C++ 面试题(含解析)(c++面试题和答案汇总)
-
大家好,我是柠檬哥,专注编程知识分享。欢迎关注@程序员柠檬橙,编程路上不迷路,私信发送以下关键字获取编程资源:发送1024打包下载10个G编程资源学习资料发送001获取阿里大神LeetCode...
- Oracle 12c系列(一)|多租户容器数据库
-
作者杨禹航出品沃趣技术Oracle12.1发布至今已有多年,但国内Oracle12C的用户并不多,随着12.2在去年的发布,选择安装Oracle12c的客户量明显增加,在接下来的几年中,Or...
- flutter系列之:UI layout简介(flutter-ui-nice)
-
简介对于一个前端框架来说,除了各个组件之外,最重要的就是将这些组件进行连接的布局了。布局的英文名叫做layout,就是用来描述如何将组件进行摆放的一个约束。在flutter中,基本上所有的对象都是wi...
- Flutter 分页功能表格控件(flutter 列表)
-
老孟导读:前2天有读者问到是否有带分页功能的表格控件,今天分页功能的表格控件详细解析来来。PaginatedDataTablePaginatedDataTable是一个带分页功能的DataTable,...
- Flutter | 使用BottomNavigationBar快速构建底部导航
-
平时我们在使用app时经常会看到底部导航栏,而在flutter中它的实现也较为简单.需要用到的组件:BottomNavigationBar导航栏的主体BottomNavigationBarI...
- Android中的数据库和本地存储在Flutter中是怎样实现的
-
如何使用SharedPreferences?在Android中,你可以使用SharedPreferencesAPI来存储少量的键值对。在Flutter中,使用Shared_Pref...
- Flet,一个Flutter应用的实用Python库!
-
▼Flet:用Python轻松构建跨平台应用!在纷繁复杂的Python框架中,Flet宛如一缕清风,为开发者带来极致的跨平台应用开发体验。它用最简单的Python代码,帮你实现移动端、桌面端...
- flutter系列之:做一个图像滤镜(flutter photo)
-
简介很多时候,我们需要一些特效功能,比如给图片做个滤镜什么的,如果是h5页面,那么我们可以很容易的通过css滤镜来实现这个功能。那么如果在flutter中,如果要实现这样的滤镜功能应该怎么处理呢?一起...
- flutter软件开发笔记20-flutter web开发
-
flutterweb开发优势比较多,采用统一的语言,就能开发不同类型的软件,在web开发中,特别是后台式软件中,相比传统的html5开发,更高效,有点像c++编程的方式,把web设计出来了。一...
- Flutter实战-请求封装(五)之设置抓包Proxy
-
用了两年的flutter,有了一些心得,不虚头巴脑,只求实战有用,以供学习或使用flutter的小伙伴参考,学习尚浅,如有不正确的地方还望各路大神指正,以免误人子弟,在此拜谢~(原创不易,转发请标注来...
- 为什么不在 Flutter 中使用全局变量来管理状态
-
我相信没有人用全局变量来管理Flutter应用程序的状态。毫无疑问,我们的Flutter应用程序需要状态管理包或Flutter的基本小部件(例如InheritedWidget或St...
- Flutter 攻略(Dart基本数据类型,变量 整理 2)
-
代码运行从main方法开始voidmain(){print("hellodart");}变量与常量var声明变量未初始化变量为nullvarc;//未初始化print(c)...
- 一周热门
- 最近发表
-
- 最全的MySQL总结,助你向阿里“开炮”(面试题+笔记+思维图)
- Redis数据库从入门到精通(redis数据库设计)
- netcore 急速接入第三方登录,不看后悔
- 精选 30 个 C++ 面试题(含解析)(c++面试题和答案汇总)
- Oracle 12c系列(一)|多租户容器数据库
- flutter系列之:UI layout简介(flutter-ui-nice)
- Flutter 分页功能表格控件(flutter 列表)
- Flutter | 使用BottomNavigationBar快速构建底部导航
- Android中的数据库和本地存储在Flutter中是怎样实现的
- Flet,一个Flutter应用的实用Python库!
- 标签列表
-
- mybatiscollection (79)
- mqtt服务器 (88)
- keyerror (78)
- c#map (65)
- xftp6 (83)
- bt搜索 (75)
- c#var (76)
- xcode-select (66)
- mysql授权 (74)
- 下载测试 (70)
- linuxlink (65)
- pythonwget (67)
- androidinclude (65)
- libcrypto.so (74)
- linux安装minio (74)
- ubuntuunzip (67)
- vscode使用技巧 (83)
- secure-file-priv (67)
- vue阻止冒泡 (67)
- jquery跨域 (68)
- php写入文件 (73)
- kafkatools (66)
- mysql导出数据库 (66)
- jquery鼠标移入移出 (71)
- 取小数点后两位的函数 (73)